Going between graphs of functions and their derivatives:

Mean value theorem, Rolle's theorem, and intervals of increase and decrease

Recall: The Intermediate Value Theorem

Suppose f is continuous on a closed interval $[a, b]$.

$$
\text { If } \quad f(a)<C<f(b) \quad \text { or } \quad f(a)>C>f(b),
$$

then there is at least one point c in the interval $[a, b]$ such that

$$
f(c)=C .
$$

The Mean Value Theorem

Theorem
Suppose that f is defined and continuous on a closed interval $[a, b]$, and suppose that f^{\prime} exists on the open interval (a, b). Then there exists a point c in (a, b) such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c) .
$$

Bad examples

Discontinuity at an endpoint

Discontinuity at an interior point

No derivative at an interior point

Examples

Does the mean value theorem apply to $f(x)=|x|$ on $[-1,1]$?
(No! Because $f(x)$ is not differentiable at $x=0$.)
How about to $f(x)=|x|$ on $[1,5]$?
(Yes! Because $f(x)=x$ on this domain, which is differentiable.)

Example

Under what circumstances does the Mean Value Theorem apply to the function $f(x)=1 / x$?

ANY closed interval on the domain!

Example

Verify the conclusion of the Mean Value Theorem for the function $f(x)=(x+1)^{3}-1$ on the interval $[-3,1]$.

Step 1: Check that the conditions of the MVT are met.
Step 2: Calculate the slope m of the line joining the two endpoints.
Step 3: Solve the equation $f^{\prime}(x)=m$.

Intervals on increase/decrease

Formally,
f is increasing if
$f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.

f is nondecreasing if
$f\left(x_{1}\right) \leq f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.

f is decreasing if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
f is nonincreasing if $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ whenever $x 1<x 2$.

Sign of the derivative If $f(x)$ is increasing, what is the sign of the derivative? Look at the difference quotient:

$$
\frac{f(x+h)-f(x)}{h}
$$

The derivative is a two-sided limit, so we have two cases:
Case 1: h is positive.
So $x+h>x$, which implies $f(x+h)-f(x)>0$.
So

$$
\frac{f(x+h)-f(x)}{h}>0 .
$$

Case 2: h is negative.
So $x+h<x$, which implies $f(x+h)-f(x)<0$.
So

$$
\frac{f(x+h)-f(x)}{h}>0 .
$$

So the difference quotient is positive!

Formally,
f is increasing if
$f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
f is nondecreasing if
$f\left(x_{1}\right) \leq f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
\qquad

f is decreasing if			
$f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.	neg.	non-pos.	
f is nonincreasing if			
$f\left(x_{1}\right) \geq f\left(x_{2}\right)$ whenever $x 1<x 2$.		non-pos.	non-pos.

So we can calculate some of the "shape" of $f(x)$ by knowing when its derivative is positive, negative, and 0 !

Example

On what interval(s) is the function $f(x)=x^{3}+x+1$ increasing or decreasing?

Step 1: Calculate the derivative.

$$
f^{\prime}(x)=3 x^{2}+1
$$

Step 2: Decide when the derivative is positive, negative, or zero.

$$
f^{\prime}(x) \text { is always positive! }
$$

Step 3: Bring that information back to $f(x)$.

$$
f(x) \text { is always increasing! }
$$

Example

Find the intervals on which the function
$f(x)=2 x^{3}-6 x^{2}-18 x+1$ is increasing and those on which it is decreasing.
Step 1: Calculate the derivative.

$$
f^{\prime}(x)=6 x^{2}-12 x-18=6(x-3)(x+1)
$$

Step 2: Decide when the derivative is positive, negative, or zero.

Step 3: Bring that information back to $f(x)$.
$f(x)$ is increasing, then decreasing, then increasing.

If f is continuous on a closed interval $[a, b]$, then there is at least one point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

The maxima or minima will happen either

1. at an endpoint, or
2. at a critical point, a point c where $f^{\prime}(c)=0$ or $f(c)$ is undefined.

Example

For the function $f(x)=2 x^{3}-6 x^{2}-18 x+1$, let us find the points in the interval $[-4,4]$ where the function assumes its maximum and minimum values.

$$
f^{\prime}(x)=6 x^{2}-12 x-18=6(x-3)(x+1)
$$

x	$f(x)$
-1	11
3	-53
-4	-151
4	-39

Absolute extrema depend on the domain!

To compute absolute minima and maxima of $f(x)$ over a closed interval $[a, b]$:

1. compute the critical points c of $f(x)$ in $[a, b]$;
2. for each critical point c, compute $f(c)$; and
3. compute $f(a)$ and $f(b)$.

The absolute minima and maxima are the smallest and biggest numbers of those computed in steps 2 and 3 .

To compute absolute minima and maxima of $f(x)$ over a open interval (a, b) :

1. compute the critical points c of $f(x)$ in (a, b);
2. for each critical point c, compute $f(c)$; and
3. compute $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow b^{+}} f(b)$.

The absolute minima and maxima are the smallest and biggest numbers of those computed in step 2 , UNLESS you got a smaller/bigger number in part 3 , in which case no min/max exists.

Rolle's Theorem

Theorem

Suppose that the function f is
continuous on the closed interval $[a, b]$,
differentiable on the open interval (a, b), and
a and b are both roots of f.
Then there is at least one point c in (a, b) where $f^{\prime}(c)=0$.

(In other words, if g didn't jump, then it had to turn around)

Again, the hypotheses matter!

Rolle's Theorem. Suppose that the function f is
continuous on the closed interval $[a, b]$,
differentiable on the open interval (a, b), and
a and b are both roots of f.
Then there is at least one point c in (a, b) where $f^{\prime}(c)=0$.

Example: Show that $x^{3}+3 x+1=0$ has exactly one real solution. Solution: Use the intermediate value theorem, followed by Rolle's theorem!

