# Going between graphs of functions and their derivatives:

Mean value theorem, Rolle's theorem, and intervals of increase and decrease

#### Recall: The Intermediate Value Theorem

Suppose f is continuous on a closed interval [a, b].

$$\text{If} \qquad f(a) < C < f(b) \qquad \text{ or } \qquad f(a) > C > f(b),$$

then there is at least one point c in the interval  $\left[a,b\right]$  such that

$$f(c) = C.$$



#### The Mean Value Theorem

#### **Theorem**

Suppose that f is defined and continuous on a closed interval [a,b], and suppose that f' exists on the open interval (a,b). Then there exists a point c in (a,b) such that

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$



# Bad examples



Does the mean value theorem apply to f(x) = |x| on [-1, 1]?

(No! Because f(x) is not differentiable at x = 0.)

How about to f(x) = |x| on [1, 5]?

(Yes! Because f(x) = x on this domain, which is differentiable.)

Under what circumstances does the Mean Value Theorem apply to the function f(x)=1/x?



ANY closed interval on the domain!

Verify the conclusion of the Mean Value Theorem for the function  $f(x)=(x+1)^3-1$  on the interval [-3,1].



- **Step 1:** Check that the conditions of the MVT are met.
- **Step 2:** Calculate the slope m of the line joining the two endpoints.
- **Step 3:** Solve the equation f'(x) = m.

## Intervals on increase/decrease

#### Formally,

```
f is increasing if f(x_1) < f(x_2) whenever x_1 < x_2.
```

$$f$$
 is nondecreasing if  $f(x_1) \leq f(x_2)$  whenever  $x_1 < x_2$ .



$$f$$
 is decreasing if  $f(x_1) > f(x_2)$  whenever  $x_1 < x_2$ .

$$f$$
 is nonincreasing if  $f(x_1) \ge f(x_2)$  whenever  $x1 < x2$ .

## Sign of the derivative

If f(x) is **increasing**, what is the sign of the derivative? Look at the difference quotient:

$$\frac{f(x+h) - f(x)}{h}$$

The derivative is a two-sided limit, so we have two cases:

Case 1: h is positive.

So 
$$x + h > x$$
, which implies  $f(x + h) - f(x) > 0$ .

So

$$\frac{f(x+h)-f(x)}{h} > 0.$$

Case 2: h is negative.

So 
$$x + h < x$$
, which implies  $f(x + h) - f(x) < 0$ .

So

$$\frac{f(x+h)-f(x)}{h} > 0.$$

So the difference quotient is positive!

## Intervals on increase/decrease

| Formally,                                                           | $ \frac{f(x+h)-f(x)}{h} $ | $\bigg  \lim_{h \to 0} \sim$ |
|---------------------------------------------------------------------|---------------------------|------------------------------|
| $f$ is increasing if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ .       | pos.                      | pos. or 0<br>(non-neg)       |
| $f$ is nondecreasing if $f(x_1) \leq f(x_2)$ whenever $x_1 < x_2$ . | non-neg.                  | non-neg.                     |
| $f$ is decreasing if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ .       | neg.                      | non-pos.                     |
| $f$ is nonincreasing if $f(x_1) \ge f(x_2)$ whenever $x1 < x2$ .    | non-pos.                  | non-pos.                     |
|                                                                     |                           |                              |

So we can calculate some of the "shape" of f(x) by knowing when its derivative is positive, negative, and 0!

On what interval(s) is the function  $f(x) = x^3 + x + 1$  increasing or decreasing?

**Step 1:** Calculate the derivative.

$$f'(x) = 3x^2 + 1$$

**Step 2:** Decide when the derivative is positive, negative, or zero.

f'(x) is always positive!

**Step 3:** Bring that information back to f(x).

f(x) is always increasing!



Find the intervals on which the function

 $f(x)=2x^3-6x^2-18x+1$  is increasing and those on which it is decreasing.

**Step 1:** Calculate the derivative.

$$f'(x) = 6x^2 - 12x - 18 = 6(x - 3)(x + 1)$$

**Step 2:** Decide when the derivative is positive, negative, or zero.



**Step 3:** Bring that information back to f(x). f(x) is increasing, then decreasing, then increasing.





If f is continuous on a closed interval [a,b], then there is at least one point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

The maxima or minima will happen either

- 1. at an endpoint, or
- 2. at a **critical point**, a point c where f'(c) = 0 or f(c) is undefined.



For the function  $f(x)=2x^3-6x^2-18x+1$ , let us find the points in the interval [-4,4] where the function assumes its maximum and minimum values.

$$f'(x) = 6x^2 - 12x - 18 = 6(x - 3)(x + 1)$$

| x  | f(x) |
|----|------|
| -1 | 11   |
| 3  | -53  |
| -4 | -151 |
| 4  | -39  |



# Absolute extrema depend on the domain!

| Function rule        | $\operatorname{Domain} D$ | Absolute extrema on $D$                                              |
|----------------------|---------------------------|----------------------------------------------------------------------|
| (a) $y = x^2$        | $(-\infty, \infty)$       | No absolute maximum Absolute minimum of 0 at $x = 0$                 |
| <b>(b)</b> $y = x^2$ | [0,2]                     | Absolute maximum of 4 at $x = 2$<br>Absolute minimum of 0 at $x = 0$ |
| (c) $y = x^2$        | (0, 2]                    | Absolute maximum of 4 at $x = 2$<br>No absolute minimum              |
| <b>(d)</b> $y = x^2$ | (0, 2)                    | No absolute extrema                                                  |









To compute absolute minima and maxima of f(x) over a closed interval [a,b]:

- 1. compute the critical points c of f(x) in [a,b];
- 2. for each critical point c, compute f(c); and
- 3. compute f(a) and f(b).

The absolute minima and maxima are the smallest and biggest numbers of those computed in steps 2 and 3.

To compute absolute minima and maxima of f(x) over a open interval (a,b):

- 1. compute the critical points c of f(x) in (a, b);
- 2. for each critical point c, compute f(c); and
- 3. compute  $\lim_{x\to a^+} f(x)$  and  $\lim_{x\to b^+} f(b)$ .

The absolute minima and maxima are the smallest and biggest numbers of those computed in step 2, *UNLESS* you got a smaller/bigger number in part 3, in which case no min/max exists.

| Function rule        | $\operatorname{Domain} D$ | Absolute extrema on D                                                |
|----------------------|---------------------------|----------------------------------------------------------------------|
| <b>(a)</b> $y = x^2$ | $(-\infty, \infty)$       | No absolute maximum Absolute minimum of 0 at $x = 0$                 |
| <b>(b)</b> $y = x^2$ | [0,2]                     | Absolute maximum of 4 at $x = 2$<br>Absolute minimum of 0 at $x = 0$ |
| (c) $y = x^2$        | (0, 2]                    | Absolute maximum of 4 at $x = 2$<br>No absolute minimum              |
| <b>(d)</b> $y = x^2$ | (0, 2)                    | No absolute extrema                                                  |









#### Rolle's Theorem

#### **Theorem**

Suppose that the function f is continuous on the closed interval [a,b], differentiable on the open interval (a,b), and a and b are both roots of f.

Then there is at least one point c in (a,b) where f'(c)=0.



(In other words, if g didn't jump, then it had to turn around)

## Again, the hypotheses matter!

Rolle's Theorem. Suppose that the function f is **continuous** on the closed interval [a,b], **differentiable** on the open interval (a,b), and a and b are both **roots** of f.

Then there is at least one point c in (a,b) where f'(c)=0.



(a) Discontinuous at an endpoint of [a, b]



(b) Discontinuous at an interior point of [a, b]



(c) Continuous on [a, b] but not differentiable at an interior point

Example: Show that  $x^3 + 3x + 1 = 0$  has exactly one real solution.

Solution: Use the intermediate value theorem, followed by Rolle's theorem!