
Going between graphs of
functions and their derivatives:

Mean value theorem, Rolle’s theorem, and

intervals of increase and decrease



Recall: The Intermediate Value Theorem

Suppose f is continuous on a closed interval [a, b].

If f(a) < C < f(b) or f(a) > C > f(b),

then there is at least one point c in the interval [a, b] such that

f(c) = C.
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The Mean Value Theorem

Theorem
Suppose that f is defined and continuous on a closed interval
[a, b], and suppose that f ′ exists on the open interval (a, b). Then
there exists a point c in (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

a c b



Bad examples

a b a b a b

Discontinuity Discontinuity No derivative
at an endpoint at an interior point at an interior point



Examples

Does the mean value theorem apply to f(x) = |x| on [−1, 1]?

(No! Because f(x) is not differentiable at x = 0.)

How about to f(x) = |x| on [1, 5]?

(Yes! Because f(x) = x on this domain, which is differentiable.)



Example

Under what circumstances does the Mean Value Theorem apply to
the function f(x) = 1/x?

ANY closed interval on the domain!



Example

Verify the conclusion of the Mean Value Theorem for the function
f(x) = (x+ 1)3 − 1 on the interval [−3, 1].

-3 -2 -1 1
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Step 1: Check that the conditions of the MVT are met.

Step 2: Calculate the slope m of the line joining the two
endpoints.

Step 3: Solve the equation f ′(x) = m.



Intervals on increase/decrease

Formally,

f is increasing if
f(x1) < f(x2) whenever x1 < x2.

f is nondecreasing if
f(x1) ≤ f(x2) whenever x1 < x2.

f is decreasing if
f(x1) > f(x2) whenever x1 < x2.

f is nonincreasing if
f(x1) ≥ f(x2) whenever x1 < x2.



Sign of the derivative
If f(x) is increasing, what is the sign of the derivative?
Look at the difference quotient:

f(x+ h)− f(x)

h

The derivative is a two-sided limit, so we have two cases:

Case 1: h is positive.
So x+ h > x, which implies f(x+ h)− f(x) > 0.
So

f(x+ h)− f(x)

h
> 0.

Case 2: h is negative.
So x+ h < x, which implies f(x+ h)− f(x) < 0.
So

f(x+ h)− f(x)

h
> 0.

So the difference quotient is positive!



Intervals on increase/decrease

Formally, f(x+h)−f(x)
h limh→0 ∼

f is increasing if
f(x1) < f(x2) whenever x1 < x2.

pos.
pos. or 0
(non-neg)

f is nondecreasing if
f(x1) ≤ f(x2) whenever x1 < x2.

non-neg. non-neg.

f is decreasing if
f(x1) > f(x2) whenever x1 < x2.

neg. non-pos.

f is nonincreasing if
f(x1) ≥ f(x2) whenever x1 < x2.

non-pos. non-pos.

So we can calculate some of the “shape” of f(x) by knowing when its
derivative is positive, negative, and 0!



Example
On what interval(s) is the function f(x) = x3 + x+ 1 increasing or
decreasing?

Step 1: Calculate the derivative.
f ′(x) = 3x2 + 1

Step 2: Decide when the derivative is positive, negative, or zero.
f ′(x) is always positive!

Step 3: Bring that information back to f(x).
f(x) is always increasing!
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Example

Find the intervals on which the function
f(x) = 2x3 − 6x2 − 18x+ 1 is increasing and those on which it is
decreasing.

Step 1: Calculate the derivative.
f ′(x) = 6x2 − 12x− 18 = 6(x− 3)(x+ 1)

Step 2: Decide when the derivative is positive, negative, or zero.

-3 -2 -1 0 1 2 3
+ + + + + + + + + + + +0 0- - - - - - - - - - 

Step 3: Bring that information back to f(x).
f(x) is increasing, then decreasing, then increasing.



f ′(x) :
-3 -2 -1 0 1 2 3

+ + + + + + + + + + + +0 0- - - - - - - - - - 

f(x) :

-3 -2 -1 1 2 3
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If f is continuous on a closed interval [a, b], then there is at least
one point in the interval where f is largest (maximized) and a
point where f is smallest (minimized).

The maxima or minima will happen either

1. at an endpoint, or

2. at a critical point, a point c where f ′(c) = 0 or f(c) is
undefined.

what’s going on right before c?
what’s going on right after c?

f '(x) is 
negative

f '(x) is 
positive

f '(x) is 
positive

f '(x) is 
negative

“local minimum” “local maximum”



Example

For the function f(x) = 2x3− 6x2− 18x+1, let us find the points
in the interval [−4, 4] where the function assumes its maximum
and minimum values.

f ′(x) = 6x2 − 12x− 18 = 6(x− 3)(x+ 1)

x f(x)

−1 11

3 −53
−4 −151
4 −39
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Absolute extrema depend on the domain!

222 Chapter 4 Applications of Derivatives

Functions defined by the same equation or formula can have different extrema (maxi-
mum or minimum values), depending on the domain. A function might not have a maxi-
mum or minimum if the domain is unbounded or fails to contain an endpoint. We see this 
in the following example.

EXAMPLE 1  The absolute extrema of the following functions on their domains can 
be seen in Figure 4.2. Each function has the same defining equation, y = x2, but the 
domains vary. 
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(b) abs max and min

 y = x2

D = [0, 2]
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(c) abs max only

 y = x2

D = (0, 2]

y
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(d) no max or min

 y = x2

D = (0, 2)

y

x
2

(a) abs min only

 y = x2

D = (−∞, ∞)

y

FIGURE 4.2  Graphs for Example 1.

Some of the functions in Example 1 do not have a maximum or a minimum value. 
The following theorem asserts that a function which is continuous over (or on) a finite 
closed interval 3a, b4  has an absolute maximum and an absolute minimum value on the 
interval. We look for these extreme values when we graph a function.
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THEOREM 1—The Extreme Value Theorem 
If ƒ is continuous on a closed interval 3a, b4 , then ƒ attains both an absolute 
maximum value M and an absolute minimum value m in 3a, b4 . That is, there are 
numbers x1 and x2 in 3a, b4  with ƒ(x1) = m, ƒ(x2) = M, and m … ƒ(x) … M  
for every other x in 3a, b4 .
The proof of the Extreme Value Theorem requires a detailed knowledge of the real 

number system (see Appendix 7) and we will not give it here. Figure 4.3 illustrates possi-
ble locations for the absolute extrema of a continuous function on a closed interval 3a, b4 . 
As we observed for the function y = cos x, it is possible that an absolute minimum (or 
absolute maximum) may occur at two or more different points of the interval.

The requirements in Theorem 1 that the interval be closed and finite, and that the 
function be continuous, are essential. Without them, the conclusion of the theorem need 
not hold. Example 1 shows that an absolute extreme value may not exist if the interval fails 

Function rule Domain D Absolute extrema on D

(a) y = x2 (-q, q) No absolute maximum
Absolute minimum of 0 at x = 0

(b) y = x2 30, 24 Absolute maximum of 4 at x = 2
Absolute minimum of 0 at x = 0

(c) y = x2 (0, 24 Absolute maximum of 4 at x = 2
No absolute minimum

(d) y = x2 (0, 2) No absolute extrema
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To compute absolute minima and maxima of f(x) over a closed
interval [a, b]:

1. compute the critical points c of f(x) in [a, b];

2. for each critical point c, compute f(c); and

3. compute f(a) and f(b).

The absolute minima and maxima are the smallest and biggest
numbers of those computed in steps 2 and 3.

To compute absolute minima and maxima of f(x) over a open
interval (a, b):

1. compute the critical points c of f(x) in (a, b);

2. for each critical point c, compute f(c); and

3. compute limx→a+ f(x) and limx→b+ f(b).

The absolute minima and maxima are the smallest and biggest
numbers of those computed in step 2, UNLESS you got a
smaller/bigger number in part 3, in which case no min/max exists.
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FIGURE 4.2  Graphs for Example 1.
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Rolle’s Theorem

Theorem
Suppose that the function f is

continuous on the closed interval [a, b],

differentiable on the open interval (a, b), and

a and b are both roots of f .

Then there is at least one point c in (a, b) where f ′(c) = 0.

a bc

m=0

(In other words, if g didn’t jump, then it had to turn around)



Again, the hypotheses matter!

Rolle’s Theorem. Suppose that the function f is

continuous on the closed interval [a, b],

differentiable on the open interval (a, b), and

a and b are both roots of f .

Then there is at least one point c in (a, b) where f ′(c) = 0.

230 Chapter 4 Applications of Derivatives

By hypothesis, ƒ has a derivative at every interior point. That rules out possibility (2), leav-
ing us with interior points where ƒ′ = 0 and with the two endpoints a and b.

If either the maximum or the minimum occurs at a point c between a and b, then 
ƒ′(c) = 0 by Theorem 2 in Section 4.1, and we have found a point for Rolle’s Theorem.

If both the absolute maximum and the absolute minimum occur at the endpoints, then 
because ƒ(a) = ƒ(b) it must be the case that ƒ is a constant function with ƒ(x) = ƒ(a) = ƒ(b) 
for every x∊ 3a, b4 . Therefore ƒ′(x) = 0 and the point c can be taken anywhere in the 
interior (a, b). 

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph 
may not have a horizontal tangent (Figure 4.11).

a bx0a bx0a

(a) Discontinuous at an 
 endpoint of [a, b]

(b) Discontinuous at an 
 interior point of [a, b]

(c) Continuous on [a, b] but not
 differentiable at an interior
 point

b
x x x

y y y

y = f (x) y = f (x) y = f (x)

FIGURE 4.11 There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do 
not hold.

Rolle’s Theorem may be combined with the Intermediate Value Theorem to show 
when there is only one real solution of an equation ƒ(x) = 0, as we illustrate in the next 
example.

EXAMPLE 1  Show that the equation

x3 + 3x + 1 = 0

has exactly one real solution.

Solution We define the continuous function

ƒ(x) = x3 + 3x + 1.

Since ƒ(-1) = -3 and ƒ(0) = 1, the Intermediate Value Theorem tells us that the graph 
of ƒ crosses the x-axis somewhere in the open interval (-1, 0). (See Figure 4.12.) Now, if 
there were even two points x = a and x = b where ƒ(x) was zero, Rolle’s Theorem 
would guarantee the existence of a point x = c in between them where ƒ′ was zero. How-
ever, the derivative

ƒ′(x) = 3x2 + 3

is never zero (because it is always positive). Therefore, ƒ has no more than one zero. 

Our main use of Rolle’s Theorem is in proving the Mean Value Theorem.

x

y

0 1

(1, 5)

1

(−1, −3)

−1

y = x3 + 3x + 1

FIGURE 4.12 The only real zero of the 
polynomial y = x3 + 3x + 1 is the one 
shown here where the curve crosses the 
x-axis between -1 and 0 (Example 1).
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Example: Show that x3 + 3x+ 1 = 0 has exactly one real solution.

Solution: Use the intermediate value theorem, followed by Rolle’s
theorem!


