
Logarithmic differentiation
Example: Calculate dy

dx if y = xsin(x)

Problem: Both the base and the exponent have the variable in
them! So we can’t use

d

dx
xa = axa−1 or

d

dx
ax = ln(a)ax.

Fix: Take the log of both sides and use implicit differentiation:

ln(y) = ln(xsin(x)) = sin(x) ∗ ln(x) (using ln(a
b
) = b ln(a))

Taking the derivative of both sides gives

1

y

dy

dx
= cos(x) ln(x) + sin(x)

1

x

Then solving for dy
dx ,

dy

dx
= y

(
cos(x) ln(x) + sin(x)

1

x

)
= xsin(x)

(
cos(x) ln(x) + sin(x)

1

x

)
.
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Logarithmic differentiation

You try: Compute the derivatives of the following functions using
logarithmic differentiation. Namely,

1. Let y = f(x), and take the natural log of both sides

2. Use ln(ab) = b ln(a) and ln(ab) = ln(a) + ln(b) to expand.

3. Use implicit differentiation to compute dy
dx .

4. Plug back in y = f(x), and simplify if necessary.

(a) f(x) = 3x

(b) f(x) = xx

(c) f(x) =
(1 + 2x)9(ex + x5)1/2

3x− 1



3.11: Linearization and Differentials

(Skip differentials)

A.K.A. Curves are tricky. Lines aren’t.



Newton’s Method for finding roots

Goal: Where is f(x) = 0?

f(x) = x7 + 3x3 + 7x2 − 1

-1 -0.5 0.5

-2
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f(x) = x7 + 3x3 + 7x2 − 1
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f(x) = x7 + 3x3 + 7x2 − 1

f ′(x) = 7x6 + 9x2 + 14x

i xi f(xi) f ′(xi) tangent line x-intercept

0 0.5

1.133 9.359 y = 1.133 + 9.359(x− 0.5) 0.379

1

0.379 0.170 6.619 y = 0.170 + 6.619(x− 0.379) 0.353

2

0.353 0.007 6.084 y = 0.007 + 6.084(x− 0.353) 0.352

3

0.352 0.00001 6.060 y = 0.00001 + 6.060(x− 0.352) 0.352
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Linear approximations of functions
Goal: approximate functions

Example: approximate
√
2

1 2 3

1

y = 1 + 1
2(x− 1)√

2 ≈ 1 + 1
2(2− 1) = 1.5

(
√
2 = 1.414...)
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Linear approximations

If f(x) is differentiable at a, then the tangent line to f(x) at
x = a is

y = f(a) + f ′(a) ∗ (x− a).

For values of x near a, then

f(x) ≈ f(a) + f ′(a) ∗ (x− a).

This is the linearization (linear approximation) of f(x) near x = a.
We usually call the line L(x).



Approximate
√
5:

Our last approximation told us

√
5 ≈ L(5) = 1 +

1

2
(5− 1) = 3

This isn’t great... (32 = 9)

Better: Use the linearization about x = 4!

The tangent line at x = 4 is

L(x) = 2 +
1

4
(x− 4)

so √
5 ≈ L(5) = 2 +

1

4
(5− 4) = 2.25

Better! (2.252 = 5.0625)
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Aside: Find better approx’s with higher derivatives. . .
The linearization (linear approximation) of f(x) near a is the line
which satisfies

L(a) = f(a) + f ′(a)(a− a) = f(a)

and

L′(a) =
d

dx

(
f(a) + f ′(a)(x− a)

)
= f ′(a)

A better approximation might be a quadratic polynomial p2(x)
which also satisfies p′′2(a) = f ′′(a):

p2(x) = f(a) + f ′(a)(x− a) + 1
2f
′′(a)(x− a)2

or a cubic polynomial p3(x) which also satisfies p
(3)
3 (a) = f (3)(a):

p3(x) = f(a) + f ′(a)(x− a) + 1
2f
′′(a)(x− a)2 + 1

2∗3f
(3)(a)(x− a)3

and so on...
These approximations are called Taylor polynomials
(related to Taylor series, §10.8)
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You try:

1. Compute the linearization of the following functions near the
given point x0.

(a) f(x) =
√
1 + 2x, x0 = 4

(b) f(x) = x cos(x), x0 = 0

2. What’s wrong with computing a linearization of
f(x) =

√
1 + 2x at x0 = 3?

3. If you wanted to approximate e3x−6 using a line, near what
value(s) of x0 could you get the best approximation with exact
coefficients? Do it.

4. Use linearization to approximate
√
10,
√
15, and

√
20. For each

answer, square your result to check how good your approximation
was.


