Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$

Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$
Problem: Both the base and the exponent have the variable in them! So we can't use

$$
\frac{d}{d x} x^{a}=a x^{a-1} \quad \text { or } \quad \frac{d}{d x} a^{x}=\ln (a) a^{x}
$$

Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$
Problem: Both the base and the exponent have the variable in them! So we can't use

$$
\frac{d}{d x} x^{a}=a x^{a-1} \quad \text { or } \quad \frac{d}{d x} a^{x}=\ln (a) a^{x}
$$

Fix: Take the log of both sides and use implicit differentiation:

Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$
Problem: Both the base and the exponent have the variable in them! So we can't use

$$
\frac{d}{d x} x^{a}=a x^{a-1} \quad \text { or } \quad \frac{d}{d x} a^{x}=\ln (a) a^{x}
$$

Fix: Take the log of both sides and use implicit differentiation:

$$
\ln (y)=\ln \left(x^{\sin (x)}\right)
$$

Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$
Problem: Both the base and the exponent have the variable in them! So we can't use

$$
\frac{d}{d x} x^{a}=a x^{a-1} \quad \text { or } \quad \frac{d}{d x} a^{x}=\ln (a) a^{x}
$$

Fix: Take the log of both sides and use implicit differentiation:

$$
\ln (y)=\ln \left(x^{\sin (x)}\right)=\sin (x) * \ln (x) \quad\left(\text { using } \ln \left(a^{b}\right)=b \ln (a)\right)
$$

Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$
Problem: Both the base and the exponent have the variable in them! So we can't use

$$
\frac{d}{d x} x^{a}=a x^{a-1} \quad \text { or } \quad \frac{d}{d x} a^{x}=\ln (a) a^{x}
$$

Fix: Take the log of both sides and use implicit differentiation:

$$
\ln (y)=\ln \left(x^{\sin (x)}\right)=\sin (x) * \ln (x) \quad\left(\text { using } \ln \left(a^{b}\right)=b \ln (a)\right)
$$

Taking the derivative of both sides gives

$$
\frac{1}{y} \frac{d y}{d x}=\cos (x) \ln (x)+\sin (x) \frac{1}{x}
$$

Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$
Problem: Both the base and the exponent have the variable in them! So we can't use

$$
\frac{d}{d x} x^{a}=a x^{a-1} \quad \text { or } \quad \frac{d}{d x} a^{x}=\ln (a) a^{x} .
$$

Fix: Take the log of both sides and use implicit differentiation:

$$
\ln (y)=\ln \left(x^{\sin (x)}\right)=\sin (x) * \ln (x) \quad\left(\text { using } \ln \left(a^{b}\right)=b \ln (a)\right)
$$

Taking the derivative of both sides gives

$$
\frac{1}{y} \frac{d y}{d x}=\cos (x) \ln (x)+\sin (x) \frac{1}{x}
$$

Then solving for $\frac{d y}{d x}$,
$\frac{d y}{d x}=y\left(\cos (x) \ln (x)+\sin (x) \frac{1}{x}\right)$

Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$
Problem: Both the base and the exponent have the variable in them! So we can't use

$$
\frac{d}{d x} x^{a}=a x^{a-1} \quad \text { or } \quad \frac{d}{d x} a^{x}=\ln (a) a^{x} .
$$

Fix: Take the log of both sides and use implicit differentiation:

$$
\ln (y)=\ln \left(x^{\sin (x)}\right)=\sin (x) * \ln (x) \quad\left(\text { using } \ln \left(a^{b}\right)=b \ln (a)\right)
$$

Taking the derivative of both sides gives

$$
\frac{1}{y} \frac{d y}{d x}=\cos (x) \ln (x)+\sin (x) \frac{1}{x}
$$

Then solving for $\frac{d y}{d x}$,

$$
\frac{d y}{d x}=y\left(\cos (x) \ln (x)+\sin (x) \frac{1}{x}\right)=x^{\sin (x)}\left(\cos (x) \ln (x)+\sin (x) \frac{1}{x}\right)
$$

Logarithmic differentiation

You try: Compute the derivatives of the following functions using logarithmic differentiation. Namely,

1. Let $y=f(x)$, and take the natural log of both sides
2. Use $\ln \left(a^{b}\right)=b \ln (a)$ and $\ln (a b)=\ln (a)+\ln (b)$ to expand.
3. Use implicit differentiation to compute $\frac{d y}{d x}$.
4. Plug back in $y=f(x)$, and simplify if necessary.
(a) $f(x)=3^{x}$
(b) $f(x)=x^{x}$
(c) $f(x)=\frac{(1+2 x)^{9}\left(e^{x}+x^{5}\right)^{1 / 2}}{3 x-1}$

3.11: Linearization and Differentials

(Skip differentials)
A.K.A. Curves are tricky. Lines aren't.

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5				
1					
2					
3					

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5	1.133	9.359	$y=1.133+9.359(x-0.5)$	0.379
1					
2					

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5	1.133	9.359	$y=1.133+9.359(x-0.5)$	0.379
1	0.379				
2					
3					

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5	1.133	9.359	$y=1.133+9.359(x-0.5)$	0.379
1	0.379	0.170	6.619	$y=0.170+6.619(x-0.379)$	0.353
2					
3					

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5	1.133	9.359	$y=1.133+9.359(x-0.5)$	0.379
1	0.379	0.170	6.619	$y=0.170+6.619(x-0.379)$	0.353
2	0.353				
3					

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5	1.133	9.359	$y=1.133+9.359(x-0.5)$	0.379
1	0.379	0.170	6.619	$y=0.170+6.619(x-0.379)$	0.353
2	0.353	0.007	6.084	$y=0.007+6.084(x-0.353)$	0.352
3					

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5	1.133	9.359	$y=1.133+9.359(x-0.5)$	0.379
1	0.379	0.170	6.619	$y=0.170+6.619(x-0.379)$	0.353
2	0.353	0.007	6.084	$y=0.007+6.084(x-0.353)$	0.352
3	0.352				

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5	1.133	9.359	$y=1.133+9.359(x-0.5)$	0.379
1	0.379	0.170	6.619	$y=0.170+6.619(x-0.379)$	0.353
2	0.353	0.007	6.084	$y=0.007+6.084(x-0.353)$	0.352
3	0.352	0.00001	6.060	$y=0.00001+6.060(x-0.352)$	0.352

Linear approximations of functions

Goal: approximate functions

Linear approximations of functions

Goal: approximate functions
Example: approximate $\sqrt{2}$

Linear approximations of functions

Goal: approximate functions
Example: approximate $\sqrt{2}$

Linear approximations of functions

Goal: approximate functions
Example: approximate $\sqrt{2}$

$$
\begin{gathered}
y=1+\frac{1}{2}(x-1) \\
\sqrt{2} \approx 1+\frac{1}{2}(2-1)=1.5
\end{gathered}
$$

Linear approximations of functions

Goal: approximate functions
Example: approximate $\sqrt{2}$

$$
\begin{gathered}
y=1+\frac{1}{2}(x-1) \\
\sqrt{2} \approx 1+\frac{1}{2}(2-1)=1.5 \quad(\sqrt{2}=1.414 \ldots)
\end{gathered}
$$

Linear approximations

If $f(x)$ is differentiable at a, then the tangent line to $f(x)$ at $x=a$ is

$$
y=f(a)+f^{\prime}(a) *(x-a)
$$

For values of x near a, then

$$
f(x) \approx f(a)+f^{\prime}(a) *(x-a)
$$

This is the linearization (linear approximation) of $f(x)$ near $x=a$. We usually call the line $L(x)$.

Approximate $\sqrt{5}$:

Approximate $\sqrt{5}$:
Our last approximation told us

$$
\sqrt{5} \approx L(5)=1+\frac{1}{2}(5-1)=3
$$

This isn't great... $\quad\left(3^{2}=9\right)$

Approximate $\sqrt{5}$:
Our last approximation told us

$$
\sqrt{5} \approx L(5)=1+\frac{1}{2}(5-1)=3
$$

This isn't great... $\quad\left(3^{2}=9\right)$
Better: Use the linearization about $x=4$!

Approximate $\sqrt{5}$:
Our last approximation told us

$$
\sqrt{5} \approx L(5)=1+\frac{1}{2}(5-1)=3
$$

This isn't great... $\quad\left(3^{2}=9\right)$
Better: Use the linearization about $x=4$!

The tangent line at $x=4$ is

$$
L(x)=2+\frac{1}{4}(x-4)
$$

so

$$
\sqrt{5} \approx L(5)=2+\frac{1}{4}(5-4)=2.25
$$

Better!

$$
\left(2.25^{2}=5.0625\right)
$$

Aside: Find better approx's with higher derivatives. . .

The linearization (linear approximation) of $f(x)$ near a is the line which satisfies

$$
\begin{aligned}
& L(a)=f(a)+f^{\prime}(a)(a-a)=f(a) \\
& \quad \text { and } \\
& L^{\prime}(a)=\frac{d}{d x}\left(f(a)+f^{\prime}(a)(x-a)\right)=f^{\prime}(a)
\end{aligned}
$$

Aside: Find better approx's with higher derivatives. . .

The linearization (linear approximation) of $f(x)$ near a is the line which satisfies

$$
\begin{aligned}
& L(a)=f(a)+f^{\prime}(a)(a-a)=f(a) \\
& \quad \text { and } \\
& L^{\prime}(a)=\frac{d}{d x}\left(f(a)+f^{\prime}(a)(x-a)\right)=f^{\prime}(a)
\end{aligned}
$$

A better approximation might be a quadratic polynomial $p_{2}(x)$ which also satisfies $p_{2}^{\prime \prime}(a)=f^{\prime \prime}(a)$:

$$
p_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Aside: Find better approx's with higher derivatives. . .

The linearization (linear approximation) of $f(x)$ near a is the line which satisfies

$$
\begin{aligned}
& L(a)=f(a)+f^{\prime}(a)(a-a)=f(a) \\
& \quad \text { and } \\
& L^{\prime}(a)=\frac{d}{d x}\left(f(a)+f^{\prime}(a)(x-a)\right)=f^{\prime}(a)
\end{aligned}
$$

A better approximation might be a quadratic polynomial $p_{2}(x)$ which also satisfies $p_{2}^{\prime \prime}(a)=f^{\prime \prime}(a)$:

$$
p_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

or a cubic polynomial $p_{3}(x)$ which also satisfies $p_{3}^{(3)}(a)=f^{(3)}(a)$:

$$
p_{3}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{2 * 3} f^{(3)}(a)(x-a)^{3}
$$

Aside: Find better approx's with higher derivatives. . .

The linearization (linear approximation) of $f(x)$ near a is the line which satisfies

$$
\begin{aligned}
& L(a)=f(a)+f^{\prime}(a)(a-a)=f(a) \\
& \quad \text { and } \\
& L^{\prime}(a)=\frac{d}{d x}\left(f(a)+f^{\prime}(a)(x-a)\right)=f^{\prime}(a)
\end{aligned}
$$

A better approximation might be a quadratic polynomial $p_{2}(x)$ which also satisfies $p_{2}^{\prime \prime}(a)=f^{\prime \prime}(a)$:

$$
p_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

or a cubic polynomial $p_{3}(x)$ which also satisfies $p_{3}^{(3)}(a)=f^{(3)}(a)$:

$$
p_{3}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{2 * 3} f^{(3)}(a)(x-a)^{3}
$$

and so on...
These approximations are called Taylor polynomials (related to Taylor series, $\S 10.8$)

You try:

1. Compute the linearization of the following functions near the given point x_{0}.
(a) $f(x)=\sqrt{1+2 x}, x_{0}=4$
(b) $f(x)=x \cos (x), x_{0}=0$
2. What's wrong with computing a linearization of $f(x)=\sqrt{1+2 x}$ at $x_{0}=3$?
3. If you wanted to approximate $e^{3 x-6}$ using a line, near what value(s) of x_{0} could you get the best approximation with exact coefficients? Do it.
4. Use linearization to approximate $\sqrt{10}, \sqrt{15}$, and $\sqrt{20}$. For each answer, square your result to check how good your approximation was.
