Using implicit differentiation for good: Inverse functions.

Warmup: Calculate $\frac{dy}{dx}$ if

1.
$$e^y = xy$$

2.
$$\cos(y) = x + y$$

- Every time: (1) Take $\frac{d}{dx}$ of both sides.
- (2) Add and subtract to get the $\frac{dy}{dx}$ terms on one side and everything else on the other.
- (3) Factor out $\frac{dy}{dx}$ and divide both sides by its coefficient.

The Derivative of $y = \ln x$

Remember:

- (1) $y = e^x$ has a slope through the point (0,1) of 1.
- (2) The natural log is the inverse function of e^x , so

$$y = \ln x \quad \Leftrightarrow \quad e^y = x$$

The Derivative of $y = \ln x$

To find the derivative of $\ln(x)$, use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^{y}=\boldsymbol{x}$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

Problem: We asked "what is the derivative of $\ln(x)$?" and got

back and answer with y in it! **Solution:** Substitute back!

$$\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln(x)}} = \frac{1}{x}$$

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

Does it make sense?

Examples

Calculate

- $1. \ \frac{d}{dx} \ln x^2$
- $2. \ \frac{d}{dx} \ln(\sin(x^2))$
- 3. $\frac{d}{dx}\log_3(x)$

[hint:
$$\log_a x = \frac{\ln x}{\ln a}$$
]

Quick tip: Logarithmic differentiation

Example: Calculate $\frac{dy}{dx}$ if $y = x^{\sin(x)}$

Problem: Both the base and the exponent have the variable in them! So we can't use

$$\frac{d}{dx}x^a = ax^{a-1}$$
 or $\frac{d}{dx}a^x = \ln(a)a^x$.

Fix: Take the log of both sides and use implicit differentiation:

$$\ln(y) = \ln(x^{\sin(x)}) = \sin(x) * \ln(x) \qquad \text{(using } \ln(a^b) = b \ln(a)\text{)}$$

Taking the derivative of both sides gives

$$\frac{1}{y}\frac{dy}{dx} = \cos(x)\ln(x) + \sin(x)\frac{1}{x}$$

Then solving for $\frac{dy}{dx}$,

$$\frac{dy}{dx} = y \left(\cos(x) \ln(x) + \sin(x) \frac{1}{x} \right) = x^{\sin(x)} \left(\cos(x) \ln(x) + \sin(x) \frac{1}{x} \right).$$

Back to inverses

In the case where $y = \ln(x)$, we used the fact that $\ln(x) = f^{-1}(x)$, where $f(x) = e^x$, and got

$$\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}.$$

In general, calculating $\frac{d}{dx}f^{-1}(x)$:

- (1) Rewrite $y = f^{-1}(x)$ as f(y) = x.
- (2) Use implicit differentiation:

$$f'(y)*\frac{dy}{dx}=1$$
 so $\boxed{\frac{dy}{dx}=\frac{1}{f'(y)}=\frac{1}{f'(f^{-1}(x))}}$

Examples

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx}\ln(x)$ (the inverse of e^x) In the notation above, $f^{-1}(x)=\ln(x)$ and $f(x)=e^x$. We'll also need $f'(x) = e^x$. So $\boxed{\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}} \quad \odot$

$$\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}$$
 ©

2. $\frac{d}{dx}\sqrt{x}$ (the inverse of x^2) In the notation above, $f^{-1}(x) = \sqrt{x}$ and $f(x) = x^2$. We'll also need f'(x) = 2x. So

$$\boxed{\frac{d}{dx}\sqrt{x} = \frac{1}{2*(\sqrt{x})}} \quad \odot$$

In general:

arc___(-) takes in a ratio and spits out an angle:

$$\cos(\theta) = a/c$$
 so $\arccos(a/c) = \theta$

$$\sin(\theta) = b/c$$
 so $\arcsin(b/c) = \theta$

$$\tan(\theta) = b/a$$
 so $\arctan(b/a) = \theta$

Domain problems:

$$\sin(0) = 0, \qquad \sin(\pi) = 0, \qquad \sin(2\pi) = 0, \qquad \sin(3\pi) = 0, \dots$$

So which is the right answer to $\arcsin(0)$, really?

Graphs

$$y = \sin(x)$$

Domain/range

$$y = \arcsin(x)$$

Domain: $-1 \le x \le 1$

Domain/range

$$y = \sin(x)$$
$$y = \arcsin(x)$$

Domain: $-1 \le x \le 1$

Domain/range

$$y = \arcsin(x)$$

Domain: $-1 \le x \le 1$

Range:
$$-\pi/2 \le y \le \pi/2$$

 $y = \cos(x)$ $y = \arccos(x)$

$y = \cos(x)$

Domain/range

Domain/range

 ${\sf Domain:} \ -1 \le x \le 1 \qquad {\sf Range:} \ 0 \le y \le \pi$

$y = \arccos(x)$

 $\text{Domain: } -1 \leq x \leq 1$

$$y = \tan(x)$$

Domain/range

$y = \arctan(x)$

Domain: $-\infty \le x \le \infty$

Domain/range

$$y = \tan(x)$$

 $y = \arctan(x)$

Domain/range

$$y = \arctan(x)$$

Domain: $-\infty \le x \le \infty$

Range: $-\pi/2 < y < \pi/2$

 $y = \sec(x)$ $y = \operatorname{arcsec}(x)$

Domain/range

Domain: $x \le -1$ and $1 \le x$

Domain: $x \le -1$ and $1 \le x$

Range: $0 \le y \le \pi$

Domain/range

Domain: $x \le -1$ and $1 \le x$

$$y = \csc(x)$$

Domain/range

$$y = \operatorname{arccsc}(x)$$

Domain: $x \le -1$ and $1 \le x$

Domain/range

$$y = \csc(x)$$
$$y = \arccos(x)$$

Domain: $x \le -1$ and $1 \le x$

Domain/range

Domain: $x \le -1$ and $1 \le x$

Range:
$$-\pi/2 \le y \le \pi/2$$

 $y = \cot(x)$ $y = \operatorname{arccot}(x)$

Domain/range

Domain/range

 $y = \operatorname{arccot}(x)$

Range: $0 < y < \pi$ Domain: $-\infty \le x \le \infty$

Domain: $-\infty \le x \le \infty$

Back to Derivatives

Use implicit differentiation to calculate the derivatives of

- 1. $\arcsin(x)$
- $2. \arctan(x)$

Use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to check your answers, and then to calculate the derivatives of the other inverse trig functions:

- 1. $\frac{d}{dx} \arccos(x)$
- 2. $\frac{d}{dx}\operatorname{arcsec}(x)$
- 3. $\frac{d}{dx}\operatorname{arccsc}(x)$
- 4. $\frac{d}{dx}\operatorname{arccot}(x)$

Recall:

Using implicit differentiation to calculate $\frac{d}{dx}\arcsin(x)$

If
$$y = \arcsin(x)$$
 then $x = \sin(y)$.

Take $\frac{d}{dx}$ of both sides of $x = \sin(y)$:

Left hand side: $\frac{d}{dx}x = 1$

Right hand side: $\frac{d}{dx}\sin(y) = \cos(y) * \frac{dy}{dx} = \cos(\arcsin(x)) * \frac{dy}{dx}$

So

$$\frac{dy}{dx} = \frac{1}{\cos(\arcsin(x))}.$$

Simplifying $\cos(\arcsin(x))$

Call $\arcsin(x) = \theta$.

$$\sin(\theta) = x$$

$$\frac{1}{\sqrt{1 - x^2}}$$

So
$$\cos(\arcsin(x)) = \sqrt{1-x^2}$$

So
$$\frac{d}{dx}\arcsin(x) = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1-x^2}}.$$

Calculating $\frac{d}{dx} \arctan(x)$.

We found that

$$\frac{d}{dx}\arctan(x) = \frac{1}{\sec^2(\arctan(x))} = \left(\frac{1}{\sec(\arctan(x))}\right)^2$$

Simplify this expression using

$$\frac{dy}{dx} = \left(\frac{1}{\sec(\arctan(x))}\right)^2 = \frac{1}{1+x^2}$$

To simplify the rest, use the triangles

