Using implicit differentiation for good: Inverse functions.

 Warmup: Calculate $\frac{d y}{d x}$ if1. $e^{y}=x y$
2. $\cos (y)=x+y$

Every time:

(1) Take $\frac{d}{d x}$ of both sides.
(2) Add and subtract to get the $\frac{d y}{d x}$ terms on one side and everything else on the other.
(3) Factor out $\frac{d y}{d x}$ and divide both sides by its coefficient.

Using implicit differentiation for good: Inverse functions.

Warmup: Calculate $\frac{d y}{d x}$ if

1. $e^{y}=x y$

Take $\frac{d}{d x}$ of both sides to find $e^{y} \frac{d y}{d x}=x \frac{d y}{d x}+y$.
So
$y=e^{y} \frac{d y}{d x}-x \frac{d y}{d x}=\frac{d y}{d x}\left(e^{y}-x\right), \quad$ implying $\quad \frac{d y}{d x}=\frac{y}{e^{y}-x}$
2. $\cos (y)=x+y$

Take $\frac{d}{d x}$ as before: $-\sin (y) \frac{d y}{d x}=1+\frac{d y}{d x}$. So

$$
\frac{d y}{d x}(\sin (y)+1)=-1, \quad \text { and so } \quad \frac{d y}{d x}=\frac{-1}{\sin (y)+1}
$$

Every time:

(1) Take $\frac{d}{d x}$ of both sides.
(2) Add and subtract to get the $\frac{d y}{d x}$ terms on one side and everything else on the other.
(3) Factor out $\frac{d y}{d x}$ and divide both sides by its coefficient.

The Derivative of $y=\ln x$

Remember:
(1) $y=e^{x}$ has a slope through the point $(0,1)$ of 1 .
(2) The natural \log is the inverse function of e^{x}, so

$$
y=\ln x \quad \Leftrightarrow \quad e^{y}=x
$$

The Derivative of $y=\ln x$

To find the derivative of $\ln (x)$, use implicit differentiation!

The Derivative of $y=\ln x$

To find the derivative of $\ln (x)$, use implicit differentiation! Rewrite

$$
y=\ln x \quad \text { as } \quad e^{y}=x
$$

The Derivative of $y=\ln x$

To find the derivative of $\ln (x)$, use implicit differentiation! Rewrite

$$
y=\ln x \quad \text { as } \quad e^{y}=x
$$

Take a derivative of both sides of $e^{y}=x$ to get

$$
\frac{d y}{d x} e^{y}=1 \quad \text { so }
$$

The Derivative of $y=\ln x$

To find the derivative of $\ln (x)$, use implicit differentiation! Rewrite

$$
y=\ln x \quad \text { as } \quad e^{y}=x
$$

Take a derivative of both sides of $e^{y}=x$ to get

$$
\frac{d y}{d x} e^{y}=1 \quad \text { so } \quad \frac{d y}{d x}=\frac{1}{e^{y}}
$$

The Derivative of $y=\ln x$

To find the derivative of $\ln (x)$, use implicit differentiation! Rewrite

$$
y=\ln x \quad \text { as } \quad e^{y}=x
$$

Take a derivative of both sides of $e^{y}=x$ to get

$$
\frac{d y}{d x} e^{y}=1 \quad \text { so } \quad \frac{d y}{d x}=\frac{1}{e^{y}}
$$

Problem: We asked "what is the derivative of $\ln (x)$?" and got back and answer with y in it!

The Derivative of $y=\ln x$

To find the derivative of $\ln (x)$, use implicit differentiation! Rewrite

$$
y=\ln x \quad \text { as } \quad e^{y}=x
$$

Take a derivative of both sides of $e^{y}=x$ to get

$$
\frac{d y}{d x} e^{y}=1 \quad \text { so } \quad \frac{d y}{d x}=\frac{1}{e^{y}}
$$

Problem: We asked "what is the derivative of $\ln (x)$?" and got back and answer with y in it!
Solution: Substitute back!

$$
\frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{e^{\ln (x)}}
$$

The Derivative of $y=\ln x$

To find the derivative of $\ln (x)$, use implicit differentiation! Rewrite

$$
y=\ln x \quad \text { as } \quad e^{y}=x
$$

Take a derivative of both sides of $e^{y}=x$ to get

$$
\frac{d y}{d x} e^{y}=1 \quad \text { so } \quad \frac{d y}{d x}=\frac{1}{e^{y}}
$$

Problem: We asked "what is the derivative of $\ln (x)$?" and got back and answer with y in it!
Solution: Substitute back!

$$
\frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{e^{\ln (x)}}=\frac{1}{x}
$$

The Derivative of $y=\ln x$

To find the derivative of $\ln (x)$, use implicit differentiation! Rewrite

$$
y=\ln x \quad \text { as } \quad e^{y}=x
$$

Take a derivative of both sides of $e^{y}=x$ to get

$$
\frac{d y}{d x} e^{y}=1 \quad \text { so } \quad \frac{d y}{d x}=\frac{1}{e^{y}}
$$

Problem: We asked "what is the derivative of $\ln (x)$?" and got back and answer with y in it!
Solution: Substitute back!

$$
\frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{e^{\ln (x)}}=\frac{1}{x}
$$

$$
\frac{d}{d x} \ln (x)=\frac{1}{x}
$$

Does it make sense?

Examples

Calculate

1. $\frac{d}{d x} \ln x^{2}$
2. $\frac{d}{d x} \ln \left(\sin \left(x^{2}\right)\right)$
3. $\frac{d}{d x} \log _{3}(x)$
[hint: $\log _{a} x=\frac{\ln x}{\ln a}$]

Examples

Calculate

1. $\frac{d}{d x} \ln x^{2}=\frac{2 x}{x^{2}}=\frac{2}{x}$
2. $\frac{d}{d x} \ln \left(\sin \left(x^{2}\right)\right)=\frac{2 x \cos \left(x^{2}\right)}{\sin \left(x^{2}\right)}$
3. $\frac{d}{d x} \log _{3}(x)=\frac{1}{x \ln (3)}$
[hint: $\log _{a} x=\frac{\ln x}{\ln a}$]

Examples

Calculate

1. $\frac{d}{d x} \ln x^{2}=\frac{2 x}{x^{2}}=\frac{2}{x}$
2. $\frac{d}{d x} \ln \left(\sin \left(x^{2}\right)\right)=\frac{2 x \cos \left(x^{2}\right)}{\sin \left(x^{2}\right)}$
3. $\frac{d}{d x} \log _{3}(x)=\frac{1}{x \ln (3)}$
[hint: $\log _{a} x=\frac{\ln x}{\ln a}$]

Notice, every time:

$$
\frac{d}{d x} \ln (f(x))=\frac{f^{\prime}(x)}{f(x)}
$$

Quick tip: Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$

Quick tip: Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$
Problem: Both the base and the exponent have the variable in them! So we can't use

$$
\frac{d}{d x} x^{a}=a x^{a-1} \quad \text { or } \quad \frac{d}{d x} a^{x}=\ln (a) a^{x}
$$

Quick tip: Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$
Problem: Both the base and the exponent have the variable in them! So we can't use

$$
\frac{d}{d x} x^{a}=a x^{a-1} \quad \text { or } \quad \frac{d}{d x} a^{x}=\ln (a) a^{x}
$$

Fix: Take the \log of both sides and use implicit differentiation:

Quick tip: Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$
Problem: Both the base and the exponent have the variable in them! So we can't use

$$
\frac{d}{d x} x^{a}=a x^{a-1} \quad \text { or } \quad \frac{d}{d x} a^{x}=\ln (a) a^{x}
$$

Fix: Take the log of both sides and use implicit differentiation:

$$
\ln (y)=\ln \left(x^{\sin (x)}\right)
$$

Quick tip: Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$
Problem: Both the base and the exponent have the variable in them! So we can't use

$$
\frac{d}{d x} x^{a}=a x^{a-1} \quad \text { or } \quad \frac{d}{d x} a^{x}=\ln (a) a^{x}
$$

Fix: Take the log of both sides and use implicit differentiation:

$$
\ln (y)=\ln \left(x^{\sin (x)}\right)=\sin (x) * \ln (x) \quad\left(\text { using } \ln \left(a^{b}\right)=b \ln (a)\right)
$$

Quick tip: Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$
Problem: Both the base and the exponent have the variable in them! So we can't use

$$
\frac{d}{d x} x^{a}=a x^{a-1} \quad \text { or } \quad \frac{d}{d x} a^{x}=\ln (a) a^{x}
$$

Fix: Take the log of both sides and use implicit differentiation:

$$
\ln (y)=\ln \left(x^{\sin (x)}\right)=\sin (x) * \ln (x) \quad\left(\text { using } \ln \left(a^{b}\right)=b \ln (a)\right)
$$

Taking the derivative of both sides gives

$$
\frac{1}{y} \frac{d y}{d x}=\cos (x) \ln (x)+\sin (x) \frac{1}{x}
$$

Quick tip: Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$
Problem: Both the base and the exponent have the variable in them! So we can't use

$$
\frac{d}{d x} x^{a}=a x^{a-1} \quad \text { or } \quad \frac{d}{d x} a^{x}=\ln (a) a^{x} .
$$

Fix: Take the log of both sides and use implicit differentiation:

$$
\ln (y)=\ln \left(x^{\sin (x)}\right)=\sin (x) * \ln (x) \quad\left(\text { using } \ln \left(a^{b}\right)=b \ln (a)\right)
$$

Taking the derivative of both sides gives

$$
\frac{1}{y} \frac{d y}{d x}=\cos (x) \ln (x)+\sin (x) \frac{1}{x}
$$

Then solving for $\frac{d y}{d x}$,

$$
\frac{d y}{d x}=y\left(\cos (x) \ln (x)+\sin (x) \frac{1}{x}\right)
$$

Quick tip: Logarithmic differentiation

Example: Calculate $\frac{d y}{d x}$ if $y=x^{\sin (x)}$
Problem: Both the base and the exponent have the variable in them! So we can't use

$$
\frac{d}{d x} x^{a}=a x^{a-1} \quad \text { or } \quad \frac{d}{d x} a^{x}=\ln (a) a^{x} .
$$

Fix: Take the log of both sides and use implicit differentiation:

$$
\ln (y)=\ln \left(x^{\sin (x)}\right)=\sin (x) * \ln (x) \quad\left(\text { using } \ln \left(a^{b}\right)=b \ln (a)\right)
$$

Taking the derivative of both sides gives

$$
\frac{1}{y} \frac{d y}{d x}=\cos (x) \ln (x)+\sin (x) \frac{1}{x}
$$

Then solving for $\frac{d y}{d x}$,

$$
\frac{d y}{d x}=y\left(\cos (x) \ln (x)+\sin (x) \frac{1}{x}\right)=x^{\sin (x)}\left(\cos (x) \ln (x)+\sin (x) \frac{1}{x}\right)
$$

Back to inverses

In the case where $y=\ln (x)$, we used the fact that $\ln (x)=f^{-1}(x)$, where $f(x)=e^{x}$, and got

$$
\frac{d}{d x} \ln (x)=\frac{1}{e^{\ln (x)}}
$$

In general, calculating $\frac{d}{d x} f^{-1}(x)$:

Back to inverses

In the case where $y=\ln (x)$, we used the fact that $\ln (x)=f^{-1}(x)$, where $f(x)=e^{x}$, and got

$$
\frac{d}{d x} \ln (x)=\frac{1}{e^{\ln (x)}}
$$

In general, calculating $\frac{d}{d x} f^{-1}(x)$:
(1) Rewrite $y=f^{-1}(x)$ as $f(y)=x$.

Back to inverses

In the case where $y=\ln (x)$, we used the fact that $\ln (x)=f^{-1}(x)$, where $f(x)=e^{x}$, and got

$$
\frac{d}{d x} \ln (x)=\frac{1}{e^{\ln (x)}}
$$

In general, calculating $\frac{d}{d x} f^{-1}(x)$:
(1) Rewrite $y=f^{-1}(x)$ as $f(y)=x$.
(2) Use implicit differentiation:

$$
f^{\prime}(y) * \frac{d y}{d x}=1 \quad \text { so } \quad \frac{d y}{d x}=\frac{1}{f^{\prime}(y)}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Examples

Just to check, use the rule

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

to calculate

1. $\frac{d}{d x} \ln (x)$ (the inverse of e^{x})
2. $\frac{d}{d x} \sqrt{x}$ (the inverse of x^{2})

Examples

Just to check, use the rule

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

to calculate

1. $\frac{d}{d x} \ln (x)$ (the inverse of e^{x})

In the notation above, $f^{-1}(x)=\ln (x)$ and $f(x)=e^{x}$.
2. $\frac{d}{d x} \sqrt{x}$ (the inverse of x^{2})

Examples

Just to check, use the rule

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

to calculate

1. $\frac{d}{d x} \ln (x)$ (the inverse of e^{x})

In the notation above, $f^{-1}(x)=\ln (x)$ and $f(x)=e^{x}$.
We'll also need $f^{\prime}(x)=e^{x}$.
2. $\frac{d}{d x} \sqrt{x}$ (the inverse of x^{2})

Examples

Just to check, use the rule

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

to calculate

1. $\frac{d}{d x} \ln (x)$ (the inverse of e^{x})

In the notation above, $f^{-1}(x)=\ln (x)$ and $f(x)=e^{x}$.
We'll also need $f^{\prime}(x)=e^{x}$. So

$$
\begin{equation*}
\frac{d}{d x} \ln (x)=\frac{1}{e^{\ln (x)}} \tag{e}
\end{equation*}
$$

2. $\frac{d}{d x} \sqrt{x}$ (the inverse of x^{2})

Examples

Just to check, use the rule

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

to calculate

1. $\frac{d}{d x} \ln (x)$ (the inverse of e^{x})

In the notation above, $f^{-1}(x)=\ln (x)$ and $f(x)=e^{x}$.
We'll also need $f^{\prime}(x)=e^{x}$. So

$$
\begin{equation*}
\frac{d}{d x} \ln (x)=\frac{1}{e^{\ln (x)}} \tag{e}
\end{equation*}
$$

2. $\frac{d}{d x} \sqrt{x}$ (the inverse of x^{2})

In the notation above, $f^{-1}(x)=\sqrt{x}$ and $f(x)=x^{2}$.

Examples

Just to check, use the rule

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

to calculate

1. $\frac{d}{d x} \ln (x)$ (the inverse of e^{x})

In the notation above, $f^{-1}(x)=\ln (x)$ and $f(x)=e^{x}$.
We'll also need $f^{\prime}(x)=e^{x}$. So

$$
\begin{equation*}
\frac{d}{d x} \ln (x)=\frac{1}{e^{\ln (x)}} \tag{e}
\end{equation*}
$$

2. $\frac{d}{d x} \sqrt{x}$ (the inverse of x^{2})

In the notation above, $f^{-1}(x)=\sqrt{x}$ and $f(x)=x^{2}$.
We'll also need $f^{\prime}(x)=2 x$.

Examples

Just to check, use the rule

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

to calculate

1. $\frac{d}{d x} \ln (x)$ (the inverse of e^{x})

In the notation above, $f^{-1}(x)=\ln (x)$ and $f(x)=e^{x}$.
We'll also need $f^{\prime}(x)=e^{x}$. So

$$
\begin{equation*}
\frac{d}{d x} \ln (x)=\frac{1}{e^{\ln (x)}} \tag{e}
\end{equation*}
$$

2. $\frac{d}{d x} \sqrt{x}$ (the inverse of x^{2})

In the notation above, $f^{-1}(x)=\sqrt{x}$ and $f(x)=x^{2}$.
We'll also need $f^{\prime}(x)=2 x$. So

$$
\frac{d}{d x} \sqrt{x}=\frac{1}{2 *(\sqrt{x})}
$$

Recall inverse trig functions

Two notations:

$$
\begin{array}{cc}
f(x) & f^{-1}(x) \\
\hline \sin (x) & \sin ^{-1}(x)=\arcsin (x) \\
\cos (x) & \cos ^{-1}(x)=\arccos (x) \\
\tan (x) & \tan ^{-1}(x)=\arctan (x) \\
\sec (x) & \sec ^{-1}(x)=\operatorname{arcsec}(x) \\
\csc (x) & \csc ^{-1}(x)=\operatorname{arccsc}(x) \\
\cot (x) & \cot ^{-1}(x)=\operatorname{arccot}(x)
\end{array}
$$

In general:
arc__(-) takes in a ratio and spits out an angle:

$$
\begin{array}{lll}
\cos (\theta)=a / c & \text { so } & \arccos (a / c)=\theta \\
\sin (\theta)=b / c & \text { so } & \arcsin (b / c)=\theta \\
\tan (\theta)=b / a & \text { so } & \arctan (b / a)=\theta
\end{array}
$$

In general: arc__(-) takes in a ratio and spits out an angle:

$$
\begin{array}{rll}
\cos (\theta)=a / c & \text { so } & \arccos (a / c)=\theta \\
\sin (\theta)=b / c & \text { so } & \arcsin (b / c)=\theta \\
\tan (\theta)=b / a & \text { so } & \arctan (b / a)=\theta
\end{array}
$$

Domain problems:

$$
\sin (0)=0, \quad \sin (\pi)=0, \quad \sin (2 \pi)=0, \quad \sin (3 \pi)=0, \ldots
$$

So which is the right answer to $\arcsin (0)$, really?

Domain/range

$$
y=\sin (x)
$$

Domain/range

$$
y=\sin (x)
$$

Domain/range

$$
\begin{gathered}
y=\sin (x) \\
y=\arcsin (x)
\end{gathered}
$$

Domain: $-1 \leq x \leq 1$

Domain/range

$$
y=\arcsin (x)
$$

Domain: $-1 \leq x \leq 1$

Domain/range

$$
y=\arcsin (x)
$$

Domain: $-1 \leq x \leq 1 \quad$ Range: $-\pi / 2 \leq y \leq \pi / 2$

Domain/range

$$
y=\cos (x)
$$

Domain/range

$$
y=\cos (x)
$$

Domain/range

$$
\begin{gathered}
y=\cos (x) \\
y=\arccos (x)
\end{gathered}
$$

Domain: $-1 \leq x \leq 1$

Domain/range

$$
y=\arccos (x)
$$

Domain: $-1 \leq x \leq 1$

Domain/range

$$
y=\arccos (x)
$$

Domain: $-1 \leq x \leq 1 \quad$ Range: $0 \leq y \leq \pi$

Domain/range

$$
y=\tan (x)
$$

Domain/range

$$
y=\tan (x)
$$

Domain/range

$$
\begin{gathered}
y=\tan (x) \\
y=\arctan (x)
\end{gathered}
$$

Domain: $-\infty \leq x \leq \infty$

Domain/range

$$
y=\arctan (x)
$$

Domain: $-\infty \leq x \leq \infty$

Domain/range

$$
y=\arctan (x)
$$

Domain: $-\infty \leq x \leq \infty$
Range: $-\pi / 2<y<\pi / 2$

Domain/range

$$
y=\sec (x)
$$

Domain/range

$$
y=\sec (x)
$$

Domain/range

$$
\begin{gathered}
y=\sec (x) \\
y=\operatorname{arcsec}(x)
\end{gathered}
$$

Domain: $x \leq-1$ and $1 \leq x$

Domain/range

$$
y=\operatorname{arcsec}(x)
$$

Domain: $x \leq-1$ and $1 \leq x$

Domain/range

$$
y=\operatorname{arcsec}(x)
$$

Domain: $x \leq-1$ and $1 \leq x \quad$ Range: $0 \leq y \leq \pi$

Domain/range

$$
y=\csc (x)
$$

Domain/range

$$
y=\csc (x)
$$

Domain/range

$$
\begin{gathered}
y=\csc (x) \\
y=\operatorname{arccsc}(x)
\end{gathered}
$$

Domain: $x \leq-1$ and $1 \leq x$

Domain/range

$$
y=\operatorname{arccsc}(x)
$$

Domain: $x \leq-1$ and $1 \leq x$

Domain/range

$$
y=\operatorname{arccsc}(x)
$$

Domain: $x \leq-1$ and $1 \leq x \quad$ Range: $-\pi / 2 \leq y \leq \pi / 2$

Domain/range

$$
y=\cot (x)
$$

Domain/range

$$
y=\cot (x)
$$

Domain/range

$$
\begin{gathered}
y=\cot (x) \\
y=\operatorname{arccot}(x)
\end{gathered}
$$

Domain: $-\infty \leq x \leq \infty$

Domain/range

$$
y=\operatorname{arccot}(x)
$$

Domain: $-\infty \leq x \leq \infty$

Domain/range

$$
y=\operatorname{arccot}(x)
$$

Domain: $-\infty \leq x \leq \infty \quad$ Range: $0<y<\pi$

Graphs

Recall:

$f(x)$	$f^{\prime}(x)$
$\sin (x)$	$\cos (x)$
$\cos (x)$	$-\sin (x)$
$\tan (x)$	$\sec ^{2}(x)$
$\sec (x)$	$\sec (x) \tan (x)$
$\csc (x)$	$-\csc (x) \cot (x)$
$\cot (x)$	$-\csc ^{2}(x)$

Back to Derivatives

Use implicit differentiation to calculate the derivatives of

1. $\arcsin (x)$
2. $\arctan (x)$

Use the rule

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

to check your answers, and then to calculate the derivatives of the other inverse trig functions:

1. $\frac{d}{d x} \arccos (x)$
2. $\frac{d}{d x} \operatorname{arcsec}(x)$
3. $\frac{d}{d x} \operatorname{arccsc}(x)$
4. $\frac{d}{d x} \operatorname{arccot}(x)$

Back to Derivatives

Use implicit differentiation to calculate the derivatives of

1. $\arcsin (x)=\frac{1}{\cos (\arcsin (x))}$
2. $\arctan (x)=\frac{1}{\sec ^{2}(\arctan (x))}$

Use the rule

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

to check your answers, and then to calculate the derivatives of the other inverse trig functions:

1. $\frac{d}{d x} \arccos (x)=-\frac{1}{\sin (\arccos (x)}$
2. $\frac{d}{d x} \operatorname{arcsec}(x)=\frac{1}{\sec (\operatorname{arcsec}(x)) \tan (\operatorname{arcsec}(x))}$
3. $\frac{d}{d x} \operatorname{arccsc}(x)=-\frac{1}{\csc (\operatorname{arccsc}(x)) \cot (\operatorname{arccsc}(x))}$
4. $\frac{d}{d x} \operatorname{arccot}(x)=-\frac{1}{\csc ^{2}(\operatorname{arccot}(x))}$

Using implicit differentiation to calculate $\frac{d}{d x} \arcsin (x)$

$$
\text { If } y=\arcsin (x) \text { then } x=\sin (y)
$$

Take $\frac{d}{d x}$ of both sides of $x=\sin (y)$:

$$
\text { Left hand side: } \quad \frac{d}{d x} x=1
$$

Right hand side:

$$
\frac{d}{d x} \sin (y)=\cos (y) * \frac{d y}{d x}=\cos (\arcsin (x)) * \frac{d y}{d x}
$$

So

$$
\frac{d y}{d x}=\frac{1}{\cos (\arcsin (x))}
$$

Simplifying cos(arcsin$(x))$
Call $\arcsin (x)=\theta$.

Simplifying cos(arcsin$(x))$
Call $\arcsin (x)=\theta$.

$$
\sin (\theta)=x
$$

Simplifying cos $(\arcsin (x))$

Call $\arcsin (x)=\theta$.

Key: This is a simple triangle to write down whose angle θ has $\sin (\theta)=x$

Simplifying cos(arcsin$(x))$
Call $\arcsin (x)=\theta$.

Simplifying cos(arcsin$(x))$
Call $\arcsin (x)=\theta$.

So $\quad \cos (\theta)=\sqrt{1-x^{2}} / 1$

Simplifying cos(arcsin$(x))$
Call $\arcsin (x)=\theta$.

So $\quad \cos (\arcsin (x))=\sqrt{1-x^{2}}$

Simplifying cos $(\arcsin (x))$

Call $\arcsin (x)=\theta$.

$$
\begin{aligned}
& \text { So } \quad \cos (\arcsin (x))=\sqrt{1-x^{2}} \\
& \text { So } \quad \frac{d}{d x} \arcsin (x)=\frac{1}{\cos (\arcsin (x))}=\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Calculating $\frac{d}{d x} \arctan (x)$.

We found that

$$
\frac{d}{d x} \arctan (x)=\frac{1}{\sec ^{2}(\arctan (x))}=\left(\frac{1}{\sec (\arctan (x))}\right)^{2}
$$

Simplify this expression using

Calculating $\frac{d}{d x} \arctan (x)$.

We found that

$$
\frac{d}{d x} \arctan (x)=\frac{1}{\sec ^{2}(\arctan (x))}=\left(\frac{1}{\sec (\arctan (x))}\right)^{2}
$$

Simplify this expression using

$$
\frac{d y}{d x}=\left(\frac{1}{\sec (\arctan (x))}\right)^{2}=\frac{1}{1+x^{2}}
$$

To simplify the rest, use the triangles

