Using implicit differentiation for good: Inverse functions.

Warmup: Calculate $\frac{dy}{dx}$ if

1. $e^y = xy$

2.
$$\cos(y) = x + y$$

Every time:

- (1) Take $\frac{d}{dx}$ of both sides.
- (2) Add and subtract to get the $\frac{dy}{dx}$ terms on one side and everything else on the other.
- (3) Factor out $\frac{dy}{dx}$ and divide both sides by its coefficient.

Using implicit differentiation for good: Inverse functions.

Warmup: Calculate $\frac{dy}{dx}$ if

1. $e^y = xy$

Take
$$\frac{d}{dx}$$
 of both sides to find $e^y \frac{dy}{dx} = x \frac{dy}{dx} + y$. So

$$y = e^y \frac{dy}{dx} - x \frac{dy}{dx} = \frac{dy}{dx} (e^y - x), \quad \text{implying} \quad \left[\frac{dy}{dx} = \frac{y}{e^y - x} \right]$$

2.
$$\cos(y) = x + y$$

Take $\frac{d}{dx}$ as before: $-\sin(y)\frac{dy}{dx} = 1 + \frac{dy}{dx}$. So

$$\frac{dy}{dx}(\sin(y)+1) = -1,$$
 and so $\frac{dy}{dx} = \frac{-1}{\sin(y)+1}$

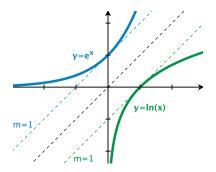
Every time:

- (1) Take $\frac{d}{dx}$ of both sides.
- (2) Add and subtract to get the $\frac{dy}{dx}$ terms on one side and everything else on the other.
- (3) Factor out $\frac{dy}{dx}$ and divide both sides by its coefficient.

Remember:

- (1) $y = e^x$ has a slope through the point (0,1) of 1.
- (2) The natural log is the inverse function of e^{x} , so

$$y = \ln x \quad \Leftrightarrow \quad e^y = x$$



To find the derivative of ln(x), use implicit differentiation!

To find the derivative of $\ln(x)$, use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

To find the derivative of $\ln(x)$, use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so

To find the derivative of $\ln(x)$, use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

To find the derivative of $\ln(x)$, use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y=x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

Problem: We asked "what is the derivative of $\ln(x)$?" and got back and answer with y in it!

To find the derivative of $\ln(x)$, use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

Problem: We asked "what is the derivative of $\ln(x)$?" and got back and answer with y in it!

Solution: Substitute back!

$$\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln(x)}}$$

To find the derivative of $\ln(x)$, use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y=x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

Problem: We asked "what is the derivative of $\ln(x)$?" and got back and answer with y in it!

Solution: Substitute back!

$$\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln(x)}} = \frac{1}{x}$$

To find the derivative of $\ln(x)$, use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

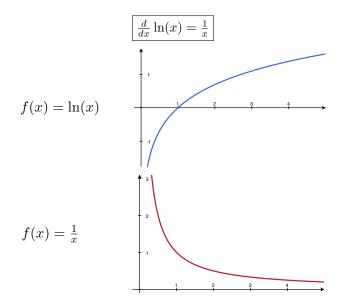
Problem: We asked "what is the derivative of $\ln(x)$?" and got back and answer with y in it!

Solution: Substitute back!

$$\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln(x)}} = \frac{1}{x}$$

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

Does it make sense?



Calculate

- 1. $\frac{d}{dx} \ln x^2$
- 2. $\frac{d}{dx} \ln(\sin(x^2))$
- 3. $\frac{d}{dx}\log_3(x)$

[hint:
$$\log_a x = \frac{\ln x}{\ln a}$$
]

Calculate

1.
$$\frac{d}{dx} \ln x^2 = \frac{2x}{x^2} = \frac{2}{x}$$

2.
$$\frac{d}{dx}\ln(\sin(x^2)) = \frac{2x\cos(x^2)}{\sin(x^2)}$$

$$3. \frac{d}{dx}\log_3(x) = \frac{1}{x\ln(3)}$$

[hint:
$$\log_a x = \frac{\ln x}{\ln a}$$
]

Calculate

1.
$$\frac{d}{dx} \ln x^2 = \frac{2x}{x^2} = \frac{2}{x}$$

2.
$$\frac{d}{dx}\ln(\sin(x^2)) = \frac{2x\cos(x^2)}{\sin(x^2)}$$

$$3. \ \frac{d}{dx}\log_3(x) = \frac{1}{x\ln(3)}$$

[hint:
$$\log_a x = \frac{\ln x}{\ln a}$$
]

Notice, every time:

$$\frac{d}{dx}\ln(f(x)) = \frac{f'(x)}{f(x)}$$

Example: Calculate $\frac{dy}{dx}$ if $y=x^{\sin(x)}$

Example: Calculate $\frac{dy}{dx}$ if $y = x^{\sin(x)}$

Problem: Both the base and the exponent have the variable in them! So we can't use

$$\frac{d}{dx}x^a = ax^{a-1} \qquad \text{or} \qquad \frac{d}{dx}a^x = \ln(a)a^x.$$

Example: Calculate $\frac{dy}{dx}$ if $y = x^{\sin(x)}$

Problem: Both the base and the exponent have the variable in them! So we can't use

$$\frac{d}{dx}x^a = ax^{a-1}$$
 or $\frac{d}{dx}a^x = \ln(a)a^x$.

Fix: Take the log of both sides and use implicit differentiation:

Example: Calculate $\frac{dy}{dx}$ if $y = x^{\sin(x)}$

Problem: Both the base and the exponent have the variable in them! So we can't use

$$\frac{d}{dx}x^a = ax^{a-1}$$
 or $\frac{d}{dx}a^x = \ln(a)a^x$.

Fix: Take the log of both sides and use implicit differentiation:

$$ln(y) = ln(x^{\sin(x)})$$

Example: Calculate $\frac{dy}{dx}$ if $y = x^{\sin(x)}$

Problem: Both the base and the exponent have the variable in them! So we can't use

$$\frac{d}{dx}x^a = ax^{a-1}$$
 or $\frac{d}{dx}a^x = \ln(a)a^x$.

Fix: Take the log of both sides and use implicit differentiation:

$$\ln(y) = \ln(x^{\sin(x)}) = \sin(x) * \ln(x) \qquad \text{(using } \ln(a^b) = b \ln(a)\text{)}$$

Example: Calculate $\frac{dy}{dx}$ if $y = x^{\sin(x)}$

Problem: Both the base and the exponent have the variable in them! So we can't use

$$\frac{d}{dx}x^a = ax^{a-1}$$
 or $\frac{d}{dx}a^x = \ln(a)a^x$.

Fix: Take the log of both sides and use implicit differentiation:

$$\ln(y) = \ln(x^{\sin(x)}) = \sin(x) * \ln(x) \qquad \text{(using } \ln(a^b) = b \ln(a)\text{)}$$

Taking the derivative of both sides gives

$$\frac{1}{y}\frac{dy}{dx} = \cos(x)\ln(x) + \sin(x)\frac{1}{x}$$

Example: Calculate $\frac{dy}{dx}$ if $y = x^{\sin(x)}$

Problem: Both the base and the exponent have the variable in them! So we can't use

$$\frac{d}{dx}x^a = ax^{a-1} \qquad \text{ or } \qquad \frac{d}{dx}a^x = \ln(a)a^x.$$

Fix: Take the log of both sides and use implicit differentiation:

$$\ln(y) = \ln(x^{\sin(x)}) = \sin(x) * \ln(x) \qquad \text{(using } \ln(a^b) = b \ln(a)\text{)}$$

Taking the derivative of both sides gives

$$\frac{1}{y}\frac{dy}{dx} = \cos(x)\ln(x) + \sin(x)\frac{1}{x}$$

Then solving for $\frac{dy}{dx}$,

$$\frac{dy}{dx} = y\left(\cos(x)\ln(x) + \sin(x)\frac{1}{x}\right)$$

Example: Calculate $\frac{dy}{dx}$ if $y = x^{\sin(x)}$

Problem: Both the base and the exponent have the variable in them! So we can't use

$$\frac{d}{dx}x^a = ax^{a-1}$$
 or $\frac{d}{dx}a^x = \ln(a)a^x$.

Fix: Take the log of both sides and use implicit differentiation:

$$\ln(y) = \ln(x^{\sin(x)}) = \sin(x) * \ln(x) \qquad \text{(using } \ln(a^b) = b \ln(a)\text{)}$$

Taking the derivative of both sides gives

$$\frac{1}{y}\frac{dy}{dx} = \cos(x)\ln(x) + \sin(x)\frac{1}{x}$$

Then solving for $\frac{dy}{dx}$,

$$\frac{dy}{dx} = y\left(\cos(x)\ln(x) + \sin(x)\frac{1}{x}\right) = x^{\sin(x)}\left(\cos(x)\ln(x) + \sin(x)\frac{1}{x}\right).$$

Back to inverses

In the case where $y=\ln(x)$, we used the fact that $\ln(x)=f^{-1}(x)$, where $f(x)=e^x$, and got

$$\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}.$$

In general, calculating $\frac{d}{dx}f^{-1}(x)$:

Back to inverses

In the case where $y=\ln(x)$, we used the fact that $\ln(x)=f^{-1}(x)$, where $f(x)=e^x$, and got

$$\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}.$$

In general, calculating $\frac{d}{dx}f^{-1}(x)$:

(1) Rewrite
$$y = f^{-1}(x)$$
 as $f(y) = x$.

Back to inverses

In the case where $y=\ln(x)$, we used the fact that $\ln(x)=f^{-1}(x)$, where $f(x)=e^x$, and got

$$\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}.$$

In general, calculating $\frac{d}{dx}f^{-1}(x)$:

- (1) Rewrite $y = f^{-1}(x)$ as f(y) = x.
- (2) Use implicit differentiation:

$$f'(y) * \frac{dy}{dx} = 1$$
 so $\left| \frac{dy}{dx} = \frac{1}{f'(y)} = \frac{1}{f'(f^{-1}(x))} \right|$.

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx}\ln(x)$ (the inverse of e^x)

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx}\ln(x)$ (the inverse of e^x) In the notation above, $f^{-1}(x)=\ln(x)$ and $f(x)=e^x$.

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx}\ln(x)$ (the inverse of e^x)
In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$.
We'll also need $f'(x) = e^x$.

Just to check, use the rule

$$\boxed{\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}}$$

to calculate

1. $\frac{d}{dx}\ln(x)$ (the inverse of e^x)
In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$. We'll also need $f'(x) = e^x$. So

Just to check, use the rule

$$\boxed{\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}}$$

to calculate

1. $\frac{d}{dx}\ln(x)$ (the inverse of e^x)
In the notation above, $f^{-1}(x)=\ln(x)$ and $f(x)=e^x$. We'll also need $f'(x)=e^x$. So

$$\boxed{\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}} \quad \odot$$

2. $\frac{d}{dx}\sqrt{x}$ (the inverse of x^2)
In the notation above, $f^{-1}(x) = \sqrt{x}$ and $f(x) = x^2$.

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx}\ln(x)$ (the inverse of e^x)
In the notation above, $f^{-1}(x)=\ln(x)$ and $f(x)=e^x$. We'll also need $f'(x)=e^x$. So

$$\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}$$
 ©

2. $\frac{d}{dx}\sqrt{x}$ (the inverse of x^2)
In the notation above, $f^{-1}(x) = \sqrt{x}$ and $f(x) = x^2$.
We'll also need f'(x) = 2x.

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx}\ln(x)$ (the inverse of e^x)
In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$.
We'll also need $f'(x) = e^x$. So

2. $\frac{d}{dx}\sqrt{x}$ (the inverse of x^2)
In the notation above, $f^{-1}(x) = \sqrt{x}$ and $f(x) = x^2$.
We'll also need f'(x) = 2x. So

$$\left| \frac{d}{dx} \sqrt{x} = \frac{1}{2 * (\sqrt{x})} \right|$$

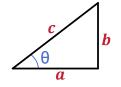
Recall inverse trig functions

Two notations:

f(x)	$f^{-1}(x)$
$\sin(x)$	$\sin^{-1}(x) = \arcsin(x)$
$\cos(x)$	$\cos^{-1}(x) = \arccos(x)$
tan(x)	$\tan^{-1}(x) = \arctan(x)$
sec(x)	$\sec^{-1}(x) = \operatorname{arcsec}(x)$
$\csc(x)$	$\csc^{-1}(x) = \arccos(x)$
$\cot(x)$	$\cot^{-1}(x) = \operatorname{arccot}(x)$

In general:

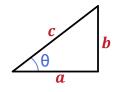
arc__(-) takes in a ratio and spits out an angle:



$$\cos(\theta) = a/c$$
 so $\arccos(a/c) = \theta$ $\sin(\theta) = b/c$ so $\arcsin(b/c) = \theta$ $\tan(\theta) = b/a$ so $\arctan(b/a) = \theta$

In general:

arc__(-) takes in a ratio and spits out an angle:



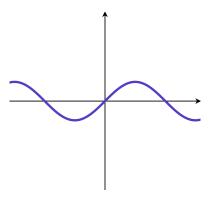
$$\cos(\theta) = a/c$$
 so $\arccos(a/c) = \theta$ $\sin(\theta) = b/c$ so $\arcsin(b/c) = \theta$ $\tan(\theta) = b/a$ so $\arctan(b/a) = \theta$

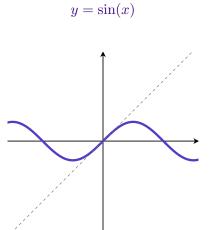
Domain problems:

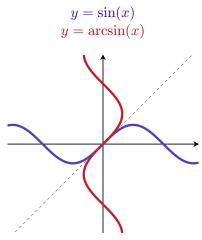
$$\sin(0) = 0$$
, $\sin(\pi) = 0$, $\sin(2\pi) = 0$, $\sin(3\pi) = 0$,...

So which is the right answer to $\arcsin(0)$, really?

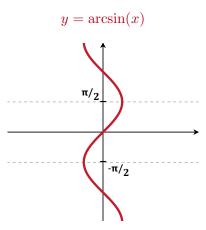
$$y = \sin(x)$$



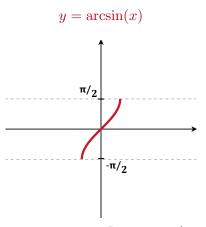




Domain: $-1 \le x \le 1$



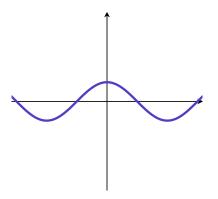
Domain: $-1 \le x \le 1$

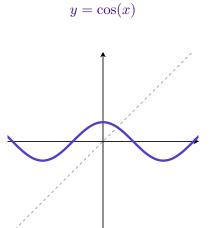


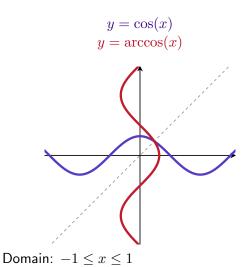
Domain: $-1 \le x \le 1$ Range: $-\pi/2 \le y \le \pi/2$

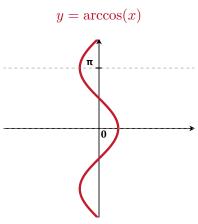
${\sf Domain}/{\sf range}$

$$y = \cos(x)$$

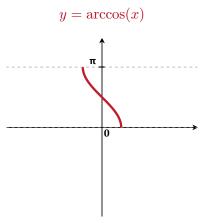






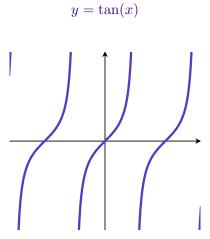


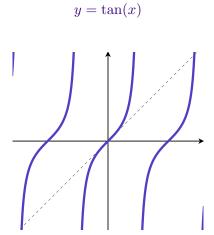
Domain: $-1 \le x \le 1$

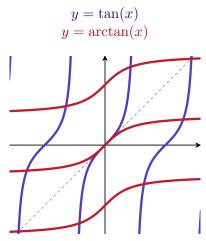


Domain: $-1 \le x \le 1$

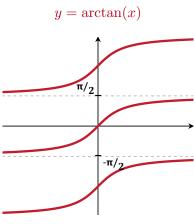
Range: $0 \le y \le \pi$



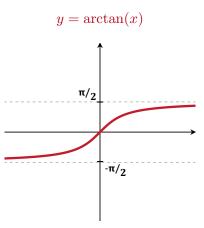




Domain: $-\infty \le x \le \infty$

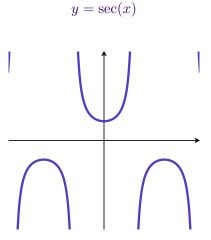


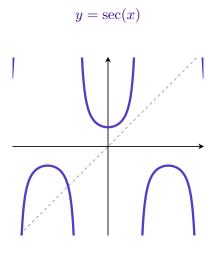
Domain: $-\infty \le x \le \infty$

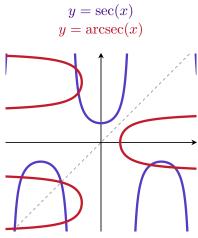


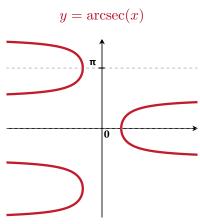
 $\mathsf{Domain:}\ -\infty \leq x \leq \infty$

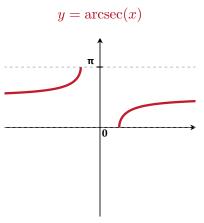
Range: $-\pi/2 < y < \pi/2$





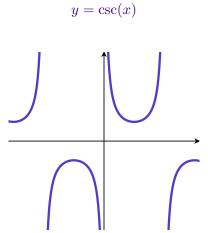


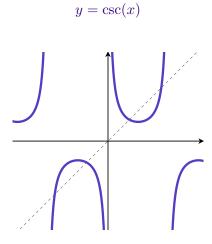


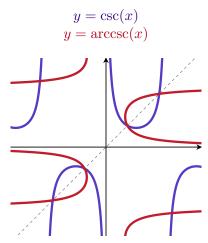


Domain: $x \le -1$ and $1 \le x$

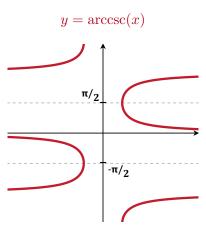
Range: $0 \le y \le \pi$



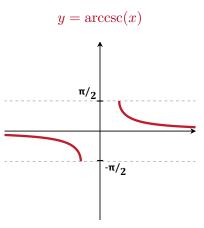




 $Domain: \ x \leq -1 \ \text{and} \ 1 \leq x$

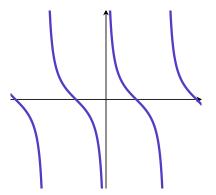


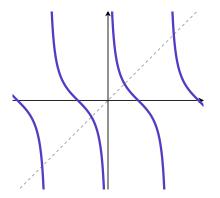
 $Domain: \ x \leq -1 \ \text{and} \ 1 \leq x$

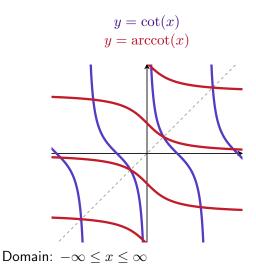


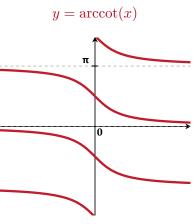
Domain: $x \le -1$ and $1 \le x$

Range: $-\pi/2 \le y \le \pi/2$

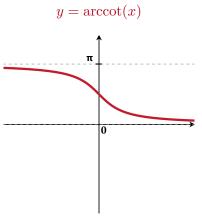








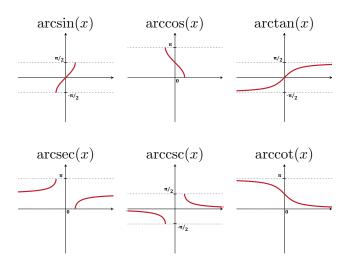
 $\mathsf{Domain:}\ -\infty \leq x \leq \infty$



 $\mathsf{Domain:}\ -\infty \leq x \leq \infty$

Range: $0 < y < \pi$

Graphs



```
Recall:
```

f(x)

 $\sin(x)$

 $\cos(x)$

tan(x)

sec(x)

 $\csc(x)$

 $\cot(x)$

f'(x)

 $\cos(x)$

 $-\sin(x)$

 $\sec^2(x)$

sec(x) tan(x)

 $-\csc(x)\cot(x)$ $-\csc^2(x)$

Back to Derivatives

Use implicit differentiation to calculate the derivatives of

- 1. $\arcsin(x)$
- 2. $\arctan(x)$

Use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to check your answers, and then to calculate the derivatives of the other inverse trig functions:

- 1. $\frac{d}{dx} \arccos(x)$
- 2. $\frac{d}{dx}\operatorname{arcsec}(x)$
- 3. $\frac{d}{dx}\operatorname{arccsc}(x)$
- 4. $\frac{d}{dx}\operatorname{arccot}(x)$

Back to Derivatives

Use implicit differentiation to calculate the derivatives of

- 1. $\arcsin(x) = \frac{1}{\cos(\arcsin(x))}$
- 2. $\arctan(x) = \frac{1}{\sec^2(\arctan(x))}$

Use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to check your answers, and then to calculate the derivatives of the other inverse trig functions:

- 1. $\frac{d}{dx} \arccos(x) = -\frac{1}{\sin(\arccos(x))}$
- 2. $\frac{d}{dx}\operatorname{arcsec}(x) = \frac{1}{\sec(\operatorname{arcsec}(x))\tan(\operatorname{arcsec}(x))}$
- 3. $\frac{d}{dx}\operatorname{arccsc}(x) = -\frac{1}{\operatorname{csc}(\operatorname{arccsc}(x))\operatorname{cot}(\operatorname{arccsc}(x))}$
- 4. $\frac{d}{dx}\operatorname{arccot}(x) = -\frac{1}{\csc^2(\operatorname{arccot}(x))}$

Using implicit differentiation to calculate $\frac{d}{dx}\arcsin(x)$

If
$$y = \arcsin(x)$$
 then $x = \sin(y)$.

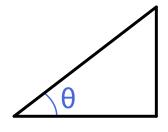
Take $\frac{d}{dx}$ of both sides of $x = \sin(y)$:

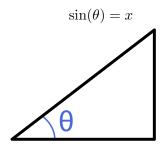
Left hand side:
$$\frac{d}{dx}x = 1$$

Right hand side:
$$\frac{d}{dx}\sin(y) = \cos(y)*\frac{dy}{dx} = \cos(\arcsin(x))*\frac{dy}{dx}$$

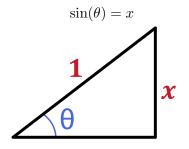
So

$$\frac{dy}{dx} = \frac{1}{\cos(\arcsin(x))}.$$

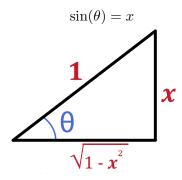


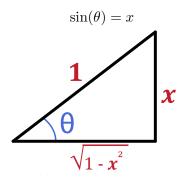


Call $\arcsin(x) = \theta$.

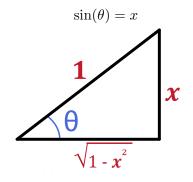


Key: This is a simple triangle to write down whose angle θ has $\sin(\theta) = x$





So
$$\cos(\theta) = \sqrt{1 - x^2} / 1$$



So
$$\cos(\arcsin(x)) = \sqrt{1-x^2}$$

$$\sin(\theta) = x$$

$$\frac{1}{\sqrt{1 - x^2}}$$

So
$$\cos(\arcsin(x)) = \sqrt{1-x^2}$$

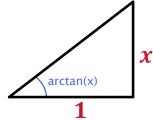
So
$$\frac{d}{dx}\arcsin(x) = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1-x^2}}.$$

Calculating $\frac{d}{dx}\arctan(x)$.

We found that

$$\frac{d}{dx}\arctan(x) = \frac{1}{\sec^2(\arctan(x))} = \left(\frac{1}{\sec(\arctan(x))}\right)^2$$

Simplify this expression using

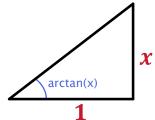


Calculating $\frac{d}{dx}\arctan(x)$.

We found that

$$\frac{d}{dx}\arctan(x) = \frac{1}{\sec^2(\arctan(x))} = \left(\frac{1}{\sec(\arctan(x))}\right)^2$$

Simplify this expression using



$$\frac{dy}{dx} = \left(\frac{1}{\sec(\arctan(x))}\right)^2 = \frac{1}{1+x^2}$$

To simplify the rest, use the triangles

