INVERSE FUNCTIONS DERIVATIVES

Recall the steps for computing $\frac{dy}{dx}$ implicitly:

(1) Take $\frac{d}{dx}$ of both sides, treating y like a function.

(2) Expand, add, subtract to get the $\frac{dy}{dx}$ terms on one side and everything else on the other.

(3) Factor out $\frac{dy}{dx}$ and divide both sides by its coefficient.

Warmup: Use implicit differentiation to compute $\frac{dy}{dx}$ for the following functions: 1. $e^y = xy$

2. $\cos(y) = x + y$

Inverse functions. Let f(x) be a function. Recall $f^{-1}(x)$ is the *inverse* function of f(x), meaning $y = f^{-1}(x)$ if and only if x = f(y).

You can also think of $f^{-1}(x)$ as "undoing" f(x), i.e.

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$.

For example, $\ln(x)$ is the inverse of e^x , since

$$y = \ln(x)$$
 if and only if $x = e^y$.

 So

$$e^{\ln(x)} = x$$
 and $\ln(e^x) = x$ for $x > 0$.

Problem 1: Using a calculator or computer, fill out the following table.

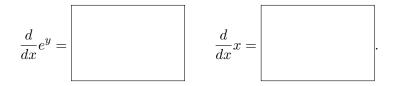
x	0	1	2	10	-1	-2	-10
e^x							
$\ln(x)$							
$\ln(e^x)$							
$e^{\ln(x)}$							

What do you notice when x is negative? Explain the pattern.

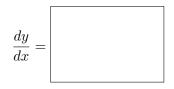
First: Rewrite

$$y = \ln x$$
 as $e^y = x$.

Next: Take a derivative of both sides of $e^y = x$:



Next: Set your answers equal to each other and solve for $\frac{dy}{dx}$.



But there's still a problem! We asked "what is the derivative of $\ln(x)$?" and got back and answer with y in it! To fix this problem, **plug in** $y = e^x$ and simplify. Finally, you should then get

$$\frac{d}{dx}\ln(x) = \frac{1}{x}.$$

Problem 2: Compare the graphs of 1/x and $\ln(x)$ and check that it makes sense that $\frac{d}{dx}\ln(x) = \frac{1}{x}$. **Problem 3:** Using your new identity, $\frac{d}{dx}\ln(x) = \frac{1}{x}$, compute the following.

- (1) $\frac{d}{dx} \ln x^2$
- (2) $\frac{d}{dx}\ln(\sin(x^2))$
- (3) $\frac{d}{dx}\log_3(x)$ [hint: $\log_a x = \frac{\ln x}{\ln a}$]
- (4) $\frac{d}{dx} \ln(f(x))$, where f(x) is a differentiable function.

Computing derivatives of inverses in general. In the case where $y = \ln(x)$, we used the fact that $\ln(x) = f^{-1}(x)$, where $f(x) = e^x$, and got

$$\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}$$

In general, calculating $\frac{d}{dx}f^{-1}(x)$: **First:** Rewrite $y = f^{-1}(x)$ as f(y) = x.

Next: Use implicit differentiation to compute $\frac{dy}{dx}$:

$$f'(y) * \frac{dy}{dx} = 1$$
 so $\frac{dy}{dx} = \frac{1}{f'(y)}$.

Finally: Plug back in $y = f^{-1}(x)$ to get an answer in terms of just x:

$$\frac{dy}{dx} = \frac{1}{f'(f^{-1}(x))}.$$

Problem 4: Check that this identity makes sense by applying it to the following examples.

(1) Compute $\frac{d}{dx}\sqrt{x}$ by noting that

if
$$f(x) = x^2$$
 then $f^{-1}(x) = \sqrt{x}$.

(2) Compute $\frac{d}{dx}\sqrt[3]{x}$ by noting that

if
$$f(x) = x^3$$
 then $f^{-1}(x) = \sqrt[3]{x}$.

(3) Compute $\frac{d}{dx}\ln(x)$ by noting that if $f(x) = e^x$ then $f^{-1}(x) = \ln(x)$. Inverse trig functions. Recall that we have two notations for inverse trig functions:

f(x)	$f^{-1}(x)$		
$\sin(x)$	$\sin^{-1}(x) = \arcsin(x)$		
$\cos(x)$	$\cos^{-1}(x) = \arccos(x)$		
$\tan(x)$	$\tan^{-1}(x) = \arctan(x)$		
$\sec(x)$	$\sec^{-1}(x) = \operatorname{arcsec}(x)$		
$\csc(x)$	$\csc^{-1}(x) = \operatorname{arccsc}(x)$		
$\cot(x)$	$\cot^{-1}(x) = \operatorname{arccot}(x)$		

Review the notes for the graphs of these functions.

Also, recall the derivatives of our favorite trig functions:

f(x)	f'(x)
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\sec^2(x)$
$\sec(x)$	$\sec(x)\tan(x)$
$\csc(x)$	$-\csc(x)\cot(x)$
$\cot(x)$	$-\csc^2(x)$

To compute the derivative of $\arcsin(x)$:

First: Rewrite $y = \arcsin(x)$ as $\sin(y) = x$.

Next: Use implicit differentiation to compute $\frac{dy}{dx}$:

$$\cos(x) * \frac{dy}{dx} = 1$$
 so $\frac{dy}{dx} = \frac{1}{\cos(y)}$

Finally: Plug back in $y = \arcsin(x)$ to get an answer in terms of just x:

$$\frac{dy}{dx} = \frac{1}{\cos(\arcsin(x))}.$$

Problem 5: Use implicit differentiation to calculate the derivative of $\arctan(x)$. **Problem 6:** Use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to check the answers to $\frac{d}{dx} \arcsin(x)$ and $\frac{d}{dx} \arctan(x)$.

Problem 7: Use the rule

$$\boxed{\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}}$$

to calculate the derivatives of the other inverse trig functions: (1) $\frac{d}{dx} \arccos(x)$

(2) $\frac{d}{dx}\operatorname{arcsec}(x)$

(3) $\frac{d}{dx} \operatorname{arccsc}(x)$

(4) $\frac{d}{dx}\operatorname{arccot}(x)$

We'll go over how to simplify these in class on Tuesday.

Solutions to warmup:

(1) $e^y = xy$: Take $\frac{d}{dx}$ of both sides to find $e^y \frac{dy}{dx} = x \frac{dy}{dx} + y$. So $y = e^y \frac{dy}{dx} - x \frac{dy}{dx} = \frac{dy}{dx}(e^y - x)$, implying $\frac{dy}{dx} = \frac{y}{e^y - x}$ (2) $\cos(y) = x + y$: Take $\frac{d}{dx}$ as before: $-\sin(y) \frac{dy}{dx} = 1 + \frac{dy}{dx}$. So $\frac{dy}{dx}(\sin(y) + 1) = -1$, and so $\frac{dy}{dx} = \frac{-1}{\sin(y) + 1}$.

Answers

x	0	1	2	10	-1	-2	-10
e^x	1	2.718	7.389	22026.318	0.368	0.135	0.000045
$\ln(x)$	Undef	0	0.693	$2.303\ldots$	Undef	Undef	Undef
$\ln(e^x)$	0	1	2	10	-1	-2	-10
$e^{\ln(x)}$	Undef	1	2	10	Undef	Undef	Undef

Answers to Problem 1: Using a calculator or computer, fill out the following table.

When x is positive, we have $\ln(e^x) = x$ and $e^{\ln(x)} = x$. But when x is non-positive (0 or negative), then $\ln(e^x) = x$, but $e^{\ln(x)}$ is undefined.

Answers to Problem 3:

(1)
$$\frac{d}{dx} \ln x^2 = \frac{2x}{x^2} = \frac{2}{x}$$

(2) $\frac{d}{dx} \ln(\sin(x^2)) = \frac{2x\cos(x^2)}{\sin(x^2)}$
(3) $\frac{d}{dx} \log_3(x) = \frac{1}{x\ln(3)}$
(4) $\frac{d}{dx} \ln(f(x)) = \frac{f'(x)}{f(x)}$

Answers to Problem 4:

(1) Compute $\frac{d}{dx}\sqrt{x}$ by noting that

if
$$f(x) = x^2$$
 then $f^{-1}(x) = \sqrt{x}$.

Answer. If $f^{-1}(x) = \sqrt{x}$, then $f(x) = x^2$, so that f'(x) = 2x. Then

$$\frac{d}{dx}\sqrt{x} = \frac{1}{f'(f^{-1}(x))} = \frac{1}{2\sqrt{x}}.$$

Compare this to

$$\frac{d}{dx}\sqrt{x} = \frac{d}{dx}x^{1/2} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}.$$

(2) Compute $\frac{d}{dx}\sqrt[3]{x}$ by noting that

if
$$f(x) = x^3$$
 then $f^{-1}(x) = \sqrt[3]{x}$.

Answer. If $f^{-1}(x) = \sqrt[3]{x}$, then $f(x) = x^3$, so that $f'(x) = 3x^2$. Then

$$\frac{d}{dx}\sqrt[3]{x} = \frac{1}{f'(f^{-1}(x))} = \frac{1}{3(\sqrt[3]{x})^2} = \frac{1}{3x^{2/3}}.$$

Compare this to

$$\frac{d}{dx}\sqrt[3]{x} = \frac{d}{dx}x^{1/3} = \frac{1}{3}x^{-2/3} = \frac{1}{3x^{2/3}}.$$

(3) Compute $\frac{d}{dx}\ln(x)$ by noting that

f
$$f(x) = e^x$$
 then $f^{-1}(x) = \ln(x)$.

Answer. If $f^{-1}(x) = \ln(x)$, then $f(x) = e^x$, so that $f'(x) = e^x$. Then

$$\frac{d}{dx}\ln(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{e^{\ln(x)}} = \frac{1}{x}.$$

Problem 5: Use implicit differentiation to calculate the derivative of $\arctan(x)$.

Answer. We have $y = \arctan(x)$ if and only if $\tan(y) = x$. Taking $\frac{d}{dx}$ of both sides gives

$$\frac{d}{dx}\tan(y) = \sec^2(y)\frac{dy}{dx}$$
 and $\frac{d}{dx}x = 1.$

 So

$$\sec^2(y)\frac{dy}{dx} = 1$$
, so that $\frac{dy}{dx} = \frac{1}{(\sec(y))^2} = \boxed{\frac{1}{(\sec(\tan(x)))^2}}$.

Problem 6: Use the rule

to check the answers to
$$\frac{d}{dx} \arcsin(x)$$
 and $\frac{d}{dx} \arctan(x)$.

Answer. If $f^{-1}(x) = \arcsin(x)$, then $f(x) = \sin(x)$, so that $f'(x) = \cos(x)$. Then

$$\frac{d}{dx}\arcsin(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\cos(\arcsin(x))}.$$

If $f^{-1}(x) = \arctan(x)$, then $f(x) = \tan(x)$, so that $f'(x) = \sec^2(x)$. Then $\frac{d}{dx}\arctan(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\sec^2(\arctan(x))}.$ **Problem 7:** Use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate the derivatives of the other inverse trig functions:

(1)
$$\frac{d}{dx} \arccos(x)$$

Answer. If $f^{-1}(x) = \arccos(x)$, then $f(x) = \cos(x)$, so that $f'(x) = -\sin(x)$. Then
 $\frac{d}{dx} \arcsin(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{-\sin(\arccos(x))}$.

(2) $\frac{d}{dx}\operatorname{arcsec}(x)$

Answer. If $f^{-1}(x) = \operatorname{arcsec}(x)$, then $f(x) = \operatorname{sec}(x)$, so that $f'(x) = \operatorname{sec}(x) \tan(x)$. Then $\frac{d}{dx}\operatorname{arcsec}(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\operatorname{sec}(\operatorname{arcsec}(x)) \tan(\operatorname{arcsec}(x))}.$

(3) $\frac{d}{dx} \operatorname{arccsc}(x)$

Answer. If $f^{-1}(x) = \arccos(x)$, then $f(x) = \csc(x)$, so that $f'(x) = \csc(x)\cot(x)$. Then

$$\frac{d}{dx}\operatorname{arccsc}(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{-\operatorname{csc}(\operatorname{arcsec}(x))\operatorname{cot}(\operatorname{arcsec}(x))}.$$

(4) $\frac{d}{dx}\operatorname{arccot}(x)$

Answer. If $f^{-1}(x) = \operatorname{arccot}(x)$, then $f(x) = \operatorname{cot}(x)$, so that $f'(x) = -\operatorname{csc}^2(x)$. Then $\frac{d}{dx}\operatorname{arccot}(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{-\operatorname{csc}^2(\operatorname{arccot}(x))}.$