Recall: Our favorite exponential function

Look at how the curve $y=a^x$ is increasing through the point (0,1):

Derivative of exponential functions

We defined e as the number such that the curve $y=e^x$ has slope m=1 at the point (0,1).

This means

$$1 = \frac{d}{dx}e^{x}\Big|_{x=0} = \lim_{h \to 0} \frac{e^{0+h} - e^{0}}{h} = \lim_{h \to 0} \frac{e^{h} - 1}{h}.$$

So we may take for granted that

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1.$$

Derivative of exponential functions

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

Now, let's compute $\frac{d}{dx}e^x$:

$$\frac{d}{dx}e^{x} = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h}$$

$$= \lim_{h \to 0} \frac{e^{x}e^{h} - e^{x}}{h}$$

$$= \lim_{h \to 0} \frac{e^{x}(e^{h} - 1)}{h}$$

$$= e^{x} \lim_{h \to 0} \frac{e^{h} - 1}{h} \qquad \text{(since } x \text{ is constant in the limit } h \to 0\text{)}$$

$$= e^{x} \cdot 1 = e^{x}.$$

So

$$\frac{d}{dx}e^x = e^x.$$

Derivative of exponential <u>functions</u>

$$\boxed{\frac{d}{dx}e^x = e^x}$$

What about $\frac{d}{dx}a^x$ for other numbers a? Recall that $\ln(x)$ is the inverse function of e^x , so that

$$e^{\ln(y)} = y.$$

Therefore,

$$a^x = e^{\ln(a^x)} = e^{x \ln(a)}, \quad \text{since } \ln(a^x) = x \ln(a).$$

Recall chain rule: $\frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x).$

Here, we can write

$$f(x) = e^x$$
 and $g(x) = \ln(a)x$ so that $f(g(x)) = e^{\ln(a)x} = a^x$.

Thus, since

$$f'(x) = e^x$$
, $g'(x) = \ln(a)$, and $f'(g(x)) = e^{\ln(a)x} = a^x$,

we have

$$\frac{d}{dx}a^x = f'(g(x)) \cdot g'(x) = a^x \cdot \ln(a).$$

Derivative of exponential functions

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx}a^x = a^x \cdot \ln(a)$$

Note: ln(e) = 1, so these rules agree when a = e. \checkmark

You try: Compute the derivatives of the following equations.

1.
$$f(x) = 2^x$$

2.
$$f(x) = 3^x$$

3.
$$f(x) = (1/5)^x$$

4.
$$f(x) = (2e)^x$$

5.
$$f(x) = e^{2x+1}$$

6.
$$f(x) = 3^{4x^2 - 5x + e^x}$$

Some applications of derivatives

Let x_0 be a real number. The **instantaneous rate of change** of f(x) with respect to x, at x_0 , is the derivative

$$f'(x_0) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Example. The area of a circle of radius r is $A=\pi r^2$. Suppose the radius of a circle is varying—how do the area vary with respect to the change in radius?

Variable: r Function: A = A(r)

Answer:

$$\frac{d}{dr}A = \frac{d}{dr}(\pi r^2) = 2\pi r.$$

Some applications of derivatives

Example. The area of a circle of radius r is $A=\pi r^2$. Suppose the radius of a circle is varying—how do the area vary with respect to the change in radius?

Variable: r Function: A = A(r)

Answer:

$$\frac{d}{dr}A = \frac{d}{dr}(\pi r^2) = 2\pi r.$$

Question: What is the rate of change of the area with respect to the radius when the radius is 5 m?

Answer:

$$\left. \frac{d}{dr} A \right|_{r=5} = 2\pi r \Big|_{r=5} = 10\pi.$$

Question: Suppose the radius is changing at a rate of 7 m/s. How fast is the area changing when the radius is 5m?

Variable: t Function: $A = A(r(t)) = \pi(r(t))^2$

Some applications of derivatives

Question: Suppose the radius is changing at a rate of 7 m/s. How fast is the area changing when the radius is 5 m?

Variable:
$$t$$
 Function: $A = A(r(t)) = \pi(r(t))^2$

Answer:

We don't know what time t_0 we care about, but we do know that at that (mystery) time,

$$r(t_0) = 5$$
 and $r'(t_0) = 7$.

So

$$\frac{d}{dt}A\Big|_{t=t_0} = 2\pi \cdot r(t_0) \cdot r'(t_0) = 2\pi \cdot 5 \cdot 7 = \boxed{70\pi}.$$

Look up "related rates" online.

Motion Along a Line

Let an object move (in time) back and forth along a line according to the function

$$s = f(t)$$
. $s = f(t)$

The **displacement** of the object over the time interval from t to $t+\Delta t$ is

$$\Delta s = f(t + \Delta t) - f(t).$$
Position at time t ... and at time $t + \Delta t$

$$s = f(t)$$

$$s + \Delta s = f(t + \Delta t)$$

The average velocity of the object over that time interval is

$$v_{\rm av} = \frac{\rm displacement}{\rm time} = \frac{\Delta s}{\Delta t} = \frac{f(t+\Delta t) - f(t)}{\Delta t}$$

(Think: Δt is just like h from before!)

The velocity of the object as a function of time is

$$v(t) = \frac{ds}{dt} = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}.$$

Speed versus velocity

If the object is moving *forward*, the velocity is positive.

Similarly, if the object is moving *backwards*, the velocity is negative.

The speed of the object is the absolute value of velocity,

$$\mathsf{speed} = |v(t)| = \left| \frac{ds}{dt} \right|.$$

Change in velocity

Acceleration a(t) is the change in velocity over time. Namely, it is the derivative of velocity with respect to time:

$$a(t) = \frac{d}{dt}v(t) = \frac{d^2}{dt^2}s(t).$$

Jerk is the change in acceleration over time, i.e. the derivative of acceleration with respect to time:

$$j(t) = \frac{d}{dt}a(t) = \frac{d^2}{dt^2}v(t) = \frac{d^3}{dt^3}s(t).$$

Acceleration under gravity

Example: We drop a ball from a very high tower. How far has it fallen after 10 seconds? How fast is it going at that point?

Ans.

$$s(10) = \frac{1}{2} \cdot g \cdot (10)^2 = 980/2 \text{ meters}, \quad v(10) = g(t) = 98\text{m/s}.$$

Acceleration under gravity

Near the surface of Earth, the vertical trajectory of a body is given by

$$s(t) = \frac{1}{2}gt^2 + v_0t + s_0,$$

where

$$g = -9.8 \text{m/s}^2,$$

 $v_0 = \text{initial velocity (m/s), and}$ $s_0 = \text{initial position (m).}$

(Frame of reference: positive is up.)

Example. A cannonball is shot up in the air from 1 meter above the ground at an initial velocity of 400 m/s.

(1) What is the maximum height that the ball reaches?

This happens when v = 0.

(2) When does the ball hit the ground?

This happens when s = 0.

Use
$$s(t) = \frac{1}{2}(-9.8)t^2 + 400t + 1$$
.

Rates of change in economics

Let's consider the cost of production c(x) as a function of x, the number of units produced. (The first thing is expensive to make; manufacturing in bulk can be more efficient.) If you're already producing x things, the average cost of producing h more units is

$$\frac{c(x+h)-c(x)}{h} = \frac{\text{extra cost of producing } h \text{ more things}}{\text{number of extra things}}.$$

Then the marginal cost of production is

marginal cost
$$=\lim_{h\to 0}\frac{c(x+h)-c(x)}{h}=\frac{d}{dx}c(x).$$

(Sometimes, h isn't relatively small compared to x, in which case we can only really look as small as h=1.)

Read examples 5 and 6 in the book.

See also "sensitivity to change", e.g. with genetic data. (Example 7)

Review

- ► Functions, basic graphs, graph transformations
- Domains and ranges
- ▶ Trig functions and identities, inverse trig functions
- Exponential functions, logarithms, and identities
- Limits
 - one- and two-sided
 - when are they defined
 - computing them
- Asymptotes
- Continuity
- Average rate of change
- Limit definition of derivatives
 - polynomials, roots, reciprocals
- Basic derivative rules
 - powers, scalars, sums, products, compositions

Functions, basic graphs, graph transformations

Know basic graphs of

$$mx + b, \quad x^2, \quad x^3, \quad x^4.$$

 $1/x, \quad 1/x^2, \quad \sqrt{x}, \quad \sqrt[3]{x}.$

If you know the graph of y=f(x), also know the graphs of

$$f(x+c)$$
, $f(cx)$, $cf(x)$, $f(x)+c$, $1/f(x)$.

Also know how graph transformations affect domain and range.

Trig functions and identities, inverse trig functions

- ▶ Graphs of sin(x) and cos(x)
- ▶ How to use the unit circle
- Special values
- ► Angle addition formulas
- ▶ How to compute tan(x), csc(x), sec(x), cot(x) and their graphs

Exponential functions, logarithms, and identities

- Graphs of a^x for a>0 and for a<0
- ▶ What is *e*?
- Identities like $a^{x+y} = a^x a^y$, etc.
- ▶ Graphs of $\log_a(x)$. What is $\ln(x)$?
- ▶ Identities like ln(xy) = ln(x) + ln(y).
- Exponential growth.

Limits and continuity

- One sided limits, from the left or right
- ► Two-sided limits
- ▶ Limits at $\pm \infty$
- Infinite limits
- Computing standard limits
- ► Graph asymptotes (vertical, horizontal, skew).
- ▶ Definition of continuous, and how to compute where functions are discontinuous.

(Difference between the limit existing and a function being continuous.)

Rates of change

► Average rate of change

$$\frac{f(x+h) - f(x)}{h}$$

▶ Limit definition of derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

- Computing derivatives of functions like $mx + b, x^2, x^3, \sqrt{x}, 1/x, 1/x^2$ using the limit definition.
- Basic derivative rules: powers, scalars, sums, products, compositions