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Recall: Our favorite exponential function

Look at how the curve y = a® is increasing through the point
(0,1):

e=2.71828183...

Q: Is there an exponential function whose slope at (0,1) is 17

A: e” is the exponential function whose slope at (0,1) is 1.
(e =2.71828183... is to calculus as m = 3.14159265. .. is to geometry)



Derivative of exponential functions

We defined e as the number such that the curve y = € has slope
m =1 at the point (0, 1).
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Derivative of exponential functions

We defined e as the number such that the curve y = € has slope
m =1 at the point (0, 1).

e=2.71828183...

/
This means
d 0+h 0 h_1
1=—¢" :hmiezhme
dr lz=0 h—0 h h—0

So we may take for granted that

e —1

lim =1\

h—0




Derivative of exponential functions

Now, let's compute %e”:

el —1
lim =
h—0

1




Derivative of exponential functions

Now, let's compute %e”:

%e

x

= lim
h—0

€

x+h_e

h

xT

el —1
lim =
h—0

1




Derivative of exponential functions

h
Coet—1
lim =1
h—0
Now, let's compute %e”:
x+h x
e 1. € —e€
—e¥ = lim ————
dx h—0 h
eTel — e
= lim

h—0 h



Derivative of exponential functions

h
1
lim & -1
h—0

Now, let's compute %e”:

x+h x
e . € —e€
—e® = lim
dx h—0
eTeh — e
= lim
h—0 h
. ‘”(eh -1)
= lim
h—0 h



Derivative of exponential functions

h
,oet—1
lim =1
h—0
' d x.
Now, let's compute 7-e”:
+h
e 1 eI _ eﬁ?
—e¥ = lim
dx h—0
) x, h _ e
= lim
h—0 h
. e(eh=1)
= lim
h—0 h
h—1
. € . . . ..
=e" lim (since x is constant in the limit h — 0)




Derivative of exponential functions

eh—l_

1

lim
h—0

' d x.
Now, let's compute 7-e”:

z+h
e g et —e”
—e" = lim
dz h—0
x, h _ e
= lim
h—0 h
G )
= lim
h—0 h
h _ 1
=e" lim (since x is constant in the limit & — 0)
h—0 14



Derivative of exponential functions

eh—l_

lim 1
h—0

' d x.
Now, let's compute 7-e”:

z+h
e g et —e”
—e* = lim ——
dx h—0
) x, h _ e
= lim ——
h—0 h
. ef(eh—1)
= lim ——=
h—0 h
h—1
1. € . . . .
=€’ lim (since x is constant in the limit h — 0)
h—0 h
=e"-1=¢€"

So
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Recall that In(x) is the inverse function of e”, so that
e = y.
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d
dz ©

What about %a"’ for other numbers a?
Recall that In(x) is the inverse function of e”, so that
e = y.

:633

Therefore,

x
a® = eln(a )



Derivative of exponential functions

d x _
dw@ =€

What about %a"’ for other numbers a?

Recall that In(x) is the inverse function of e”, so that
e = y.

Therefore,

a® = ™) = @) gince In(a?) = zIn(a).

Recall chain rule: %f(g(:z;)) = f'(g(2)) - ¢ (x)|




Derivative of exponential functions

d x _
dw@ =€

What about %a"’ for other numbers a?
Recall that In(x) is the inverse function of e”, so that

e = y.
Therefore,
a® = ™) = @) gince In(a?) = zIn(a).
Recall chain rule: %f{g(m)) = f'(g(2)) - ¢ (x)|

Here, we can write
f(z) =¢€® and g(z) = In(a)x



Derivative of exponential functions

d x _
dw@ =€

What about %a"’ for other numbers a?

Recall that In(x) is the inverse function of e”, so that
e = y.

Therefore,
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Derivative of exponential functions

d x _
dw@ =€

What about %a"’ for other numbers a?

Recall that In(x) is the inverse function of e”, so that
e = y.

Therefore,

a® = ™) = @) gince In(a?) = zIn(a).

Recall chain rule: %f{g(:p)) = f'(g(2)) - ¢ (x)|
Here, we can write

f(x) = e® and g(x) = In(a)z  so that f(g(z)) = e™@7 = o=,
Thus, since

f/(T) = €, g/(ﬂ,’) = In(a),




Derivative of exponential functions

d
dx

What about %a"’ for other numbers a?
Recall that In(x) is the inverse function of e”, so that
e = y.

e’ =¢e”

Therefore,

In(a®) _ ezln(a)7

a® =e since In(a”) = xIn(a).

Recall chain rule: %f(g(:z;)) = f'(g(2)) - ¢ (x)|
Here, we can write

f(x) = e® and g(x) = In(a)z  so that f(g(z)) = e™@7 = o=,
Thus, since

fl(z) =€, ¢(z)=1In(a), and f'(g(x)) = e"V* =¢2,




Derivative of exponential functions

d
dx

What about %a"’ for other numbers a?
Recall that In(x) is the inverse function of e”, so that
e = y.

e’ =¢e”

Therefore,

a® = ™) = @) gince In(a?) = zIn(a).

Recall chain rule: %f{g(m)) = f'(g(2)) - ¢ (x)|

Here, we can write
f(x) = e® and g(x) = In(a)z  so that f(g(z)) = e™@7 = o=,

Thus, since
fla)y=e, d(x)=In(a), and flg(x) =" = a7,
we have




Derivative of exponential functions

met=¢e" %am =a" - In(a)

Note: In(e) = 1, so these rules agree when a =e. Vv

You try: Compute the derivatives of the following equations.

1. f(z)=2"

2. f(x)=3"

3. fz) = (1/5)"

4. f(x) = (2¢)*

5. fz) = e+l

6. flz)= gda®—5z+e”



Derivative of exponential functions

Note: In(e) = 1, so these rules agree when a = e.

z d
dx

a® =a” -In(a)

v

You try: Compute the derivatives of the following equations.

1.
2.

3.

fz) =27

fx) =3

f(z) = (1/5)"

f(@) = (2¢)"

f(z) = 2o+l

f(z) = gda®—5z+e” Ans:

Ans: | 2% - 1n(2)
Ans:

!
~—

3% - In(

In(5)
5T

Ans: | (2¢)° - (In(2) + 1)

Ans: | 2¢27+1

1% —5ete” In(3) - (8 — 5)

Ans:




Some applications of derivatives
Let xg be a real number. The instantaneous rate of change of
f(z) with respect to z, at zg, is the derivative
flz+h) - f(z)
3 .

I = i
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Example. The area of a circle of radius r is A = 7r2.
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Let zo be a real number. The instantaneous rate of change of
f(x) with respect to z, at zg, is the derivative
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I (o) = h
Example. The area of a circle of radius r is A = mr2. Suppose
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Answer:
d d
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Some applications of derivatives

Example. The area of a circle of radius r is A = 7r2. Suppose
the radius of a circle is varying—how do the area vary with respect
to the change in radius?

Variable: r Function: A = A(r)

Answer:
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%A = $<7T7’2) = 27r.
Question: What is the rate of change of the area with respect to

the radius when the radius is 5 m?



Some applications of derivatives

Example. The area of a circle of radius r is A = 7r2. Suppose
the radius of a circle is varying—how do the area vary with respect
to the change in radius?

Variable: r Function: A = A(r)

Answer:
d d
drA = 5(71’7’2) = 277
Question: What is the rate of change of the area with respect to
the radius when the radius is 5 m?

Answer:

d

dr lr=5



Some applications of derivatives

Example. The area of a circle of radius r is A = 7r2. Suppose
the radius of a circle is varying—how do the area vary with respect
to the change in radius?

Variable: r Function: A = A(r)

Answer:

d . d,
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Question: What is the rate of change of the area with respect to
the radius when the radius is 5 m?
Answer:

Ly
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= 2nr
r=>5

Question: Suppose the radius is changing at a rate of 7 m/s. How
fast is the area changing when the radius is 5m?
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Example. The area of a circle of radius r is A = 7r2. Suppose
the radius of a circle is varying—how do the area vary with respect
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Answer:
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Some applications of derivatives

Question: Suppose the radius is changing at a rate of 7 m/s. How
fast is the area changing when the radius is 5 m?
Variable: ¢ Function: A = A(r(t)) = n(r(t))?
Answer:
d d
ZA=
dt dt
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Some applications of derivatives

Question: Suppose the radius is changing at a rate of 7 m/s. How
fast is the area changing when the radius is 5 m?

Variable: t Function: A = A(r(t)) = n(r(t))?

Answer:
d d dA dr ,
%A = %A(r(t)) = @ = (2mr(t))r'(t).
—_——

Use Leibnitz notation!
We don't know what time ¢ty we care about, but we do know that
at that (mystery) time,

r(to) =5 and ' (to) = 7.

So

d
tht t =2m - 7(to) - '(to) = 2w - 57 =70z |
=to

Look up ‘“related rates” online.
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to the function
>

s = f(t). s = ()

The displacement of the object over the time interval from ¢ to
t+ At is

Position a‘t time 7 ... and at tirfle t+ At
As
As = f(t+ At) — f(2). — !
s =f(@) s+ As = f(t + Ar)
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Motion Along a Line

Let an object move (in time) back and forth along a line according

to the function
’_

e

s = f(t). s = ()
The displacement of the object over the time interval from ¢ to
t+ At is

Position a‘t time 7 ... and at tirfle t+ At
: As
Aszf(t+At)_f(t)' ; > ; s
s =f(@) s+ As = f(t + Ar)

Of course, we could graph s versus t to get a 2-d picture, but the
object is still just moving in 1 dimension. ..

/\/ s = f(ﬂ

t



Motion Along a Line

Let an object move (in time) back and forth along a line according

to the function
»>—

e
s = f(t). s = f(1)
The displacement of the object over the time interval from ¢ to

t+ Atis

Position a‘t time 7 ... and at time ¢ + Ar
: As 5
As = f(t+ At) — f(1). I —— . ,
s =f) s+ As = f(r + Ar)

The average velocity of the object over that time interval is
_ displacement  As
N time At

Vav
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Let an object move (in time) back and forth along a line according

to the function
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s = f(t). s =f(0)
The displacement of the object over the time interval from ¢ to
t+ At is

Position a‘t time 7 ... and at tir‘ne t+ Ar
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The average velocity of the object over that time interval is
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time At At
(Think: At is just like h from before!)
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Motion Along a Line

Let an object move (in time) back and forth along a line according

to the function
>

e

s = f(t). s =f(0)
The displacement of the object over the time interval from ¢ to
t+ At is

Position a‘t timer ... and at tir‘ne t+ Ar
: As 5
As = f(t+At) — f(2). L — ,
s = f(t) s+ As = f(t + Ar)

The average velocity of the object over that time interval is
_ displacement  As  f(t+ At) — f(t)

time At At
(Think: At is just like h from before!)

The velocity of the object as a function of time is
_ds o f(t+ AL — f(2)
O AT A

Vav




Speed versus velocity

If the object is moving forward, the velocity is positive.

N




Speed versus velocity

If the object is moving forward, the velocity is positive.

Ky s

T

\é

0 0

Similarly, if the object is moving backwards, the velocity is
negative.



Speed versus velocity

If the object is moving forward, the velocity is positive.

Ky s

0 0

Similarly, if the object is moving backwards, the velocity is
negative.

The speed of the object is the absolute value of velocity,
ds
dt

speed = |v(t)| =




Change in velocity

Acceleration a(t) is the change in velocity over time. Namely, it
is the derivative of velocity with respect to time:

2
a(t) = %U(t) = %S(t).



Change in velocity

Acceleration a(t) is the change in velocity over time. Namely, it
is the derivative of velocity with respect to time:

2
a(t) = %v(t) = %S(t).

Jerk is the change in acceleration over time, i.e. the derivative of
acceleration with respect to time:
d d? d?
i(t) = —a(t) = —v(t) = —=s(t).
.7( ) dta( ) dtzv( ) dt38( )
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Acceleration under gravity

t (seconds) s (meters)
=0 @ o0 Near the surface of Earth all bodies fall with
=1 ) 5 the same constant acceleration:
- 10 1
L 15 s = 59152, where g = 9.8m/52.
r=2 ) 20 (Frame of reference: positive is down.)
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Acceleration under gravity

t (seconds) s (meters)

=0 @ o0 Near the surface of Earth all bodies fall with
=1 2 5 the same constant acceleration:

- 10 1

L 15 s = 59152, where g = 9.8m/52.
=2 ) 120 (Frame of reference: positive is down.)

2 Check:

=30

d d (1 , 1
L V= —8§= t°) =--9g-2t
35 at’  dt ( g > 29

- 40

r=3 ) 145




Acceleration under gravity

t (seconds)
t=0

s (meters)

-0
-5
- 10
15
20
L 25
- 30
- 35
- 40
- 45

Near the surface of Earth all bodies fall with
the same constant acceleration:

1 2
= —gt
2!},

(Frame of reference: positive is down.)

Check:

v—is d 1t2 _! 2% = gt
Tat T \29" ) T 9T

where g =9.8m/s”,



Acceleration under gravity

t (seconds)
t=0

s (meters)

-0
-5
- 10
15
20
L 25
- 30
- 35
- 40
- 45

Near the surface of Earth all bodies fall with
the same constant acceleration:

1
s = 59152, where g = 9.8m/52.
(Frame of reference: positive is down.)

Check:

B (2
Tatt T a\2% ) T2 9T



Acceleration under gravity

t (seconds) s (meters)

=0 @ O
t=1 ) k5
- 10
-15
t=2 0 |20
25
30
35
40
r=3 ) 145

Near the surface of Earth all bodies fall with
the same constant acceleration:

L

s = igt where g = 9.8m/52.

(Frame of reference: positive is down.)

Check:



Acceleration under gravity

t (seconds) s (meters)
=0 @ o Near the surface of Earth all bodies fall with
=1 2 5 the same constant acceleration:
- 10 1
L 15 s = igt2, where g = 9.8m/52.
=2 ) 120 (Frame of reference: positive is down.)
2 Check:
30 d d (1 LD
V= —8§ = _ — . . = .
35 at’ " ar \ 27 99 g
40 d d
1=3 ) F4s a=v="29=g v

Example: We drop a ball from a very high tower. How far has it
fallen after 10 seconds? How fast is it going at that point?



Acceleration under gravity

t (seconds) s (meters)
=0 @ o Near the surface of Earth all bodies fall with
=1 2 5 the same constant acceleration:
- 10 1
L 15 s = igt2, where g = 9.8m/52.
=2 ) 120 (Frame of reference: positive is down.)
2 Check:
30 d d (1 LD
V= —8§ = _ — . . = .
35 at’ " ar \ 27 99 g
40 d d
1=3 ) F4s a=v="29=g v

Example: We drop a ball from a very high tower. How far has it
fallen after 10 seconds? How fast is it going at that point?
Ans.

5(10) = = - g - (10)? = 980/2 meters, v(10) = g(t) = 98m/s.

| =



Acceleration under gravity

Near the surface of Earth, the vertical trajectory of a body is given
by

1
s(t) = 59t + vot + s,

where
g=—9.8m/s*,
vo = initial velocity (m/s), and
s¢ = initial position (m).

(Frame of reference: positive is up.)



Acceleration under gravity
Near the surface of Earth, the vertical trajectory of a body is given
by
L o
s(t) = 59t + vot + so,

2
where

g=—9.8m/s*,
vo = initial velocity (m/s), and
s¢ = initial position (m).
(Frame of reference: positive is up.)

Example. A cannonball is shot up in the air from 1 meter above
the ground at an initial velocity of 400 m/s.
(1) What is the maximum height that the ball reaches?

(2) When does the ball hit the ground?



Acceleration under gravity

Near the surface of Earth, the vertical trajectory of a body is given
by
L o

s(t) = 591" + vot + s,

where
g= —9.8m/52,
vo = initial velocity (m/s), and
s¢ = initial position (m).
(Frame of reference: positive is up.)

Example. A cannonball is shot up in the air from 1 meter above
the ground at an initial velocity of 400 m/s.
(1) What is the maximum height that the ball reaches?

This happens when v = 0.
(2) When does the ball hit the ground?
This happens when s = 0.



Acceleration under gravity

Near the surface of Earth, the vertical trajectory of a body is given
by
L o

s(t) = 591" + vot + s,

where
g= —9.8m/52,
vo = initial velocity (m/s), and
s¢ = initial position (m).
(Frame of reference: positive is up.)

Example. A cannonball is shot up in the air from 1 meter above
the ground at an initial velocity of 400 m/s.
(1) What is the maximum height that the ball reaches?

This happens when v = 0.
(2) When does the ball hit the ground?
This happens when s = 0.

Use |s(t) = 1(—9.8)t% + 400t + 1|
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Rates of change in economics

Let's consider the cost of production ¢(x) as a function of z, the
number of units produced. (The first thing is expensive to make;
manufacturing in bulk can be more efficient.) If you're already

producing x things, the average cost of producing A more units is

c(x +h) —c(z) extra cost of producing h more things
h number of extra things '

Then the marginal cost of production is
clx+h)—clz) d
Y = dwc(a:).
(Sometimes, h isn't relatively small compared to z, in which case

we can only really look as small as h = 1.)

marginal cost = lim
h—0

Read examples 5 and 6 in the book.

See also “sensitivity to change”, e.g. with genetic data.
(Example 7)



Review

» Functions, basic graphs, graph transformations
» Domains and ranges
» Trig functions and identities, inverse trig functions
» Exponential functions, logarithms, and identities
> Limits
> one- and two-sided
» when are they defined
» computing them
> Asymptotes
» Continuity
> Average rate of change
» Limit definition of derivatives
» polynomials, roots, reciprocals
» Basic derivative rules
» powers, scalars, sums, products, compositions



Functions, basic graphs, graph transformations

Know basic graphs of
mx+b, z2, 23 2t
1z, 1/22 Vz, V.

If you know the graph of y = f(x), also know the graphs of
fletc), flex), cf(x), flz)+ec, 1/f(2)

Also know how graph transformations affect domain and range.



Trig functions and identities, inverse trig functions

v

Graphs of sin(x) and cos(z)

How to use the unit circle

v

v

Special values

v

Angle addition formulas

» How to compute tan(x), csc(z), sec(x), cot(z) and their
graphs



Exponential functions, logarithms, and identities

v

Graphs of a” for a > 0 and for a < 0
What is e?

Identities like a**¥ = a®a¥, etc.
Graphs of log,(z). What is In(x)?
Identities like In(zy) = In(z) + In(y).

Exponential growth.

v

v

v

v

v



Limits

and continuity

One sided limits, from the left or right
Two-sided limits

Limits at 400

Infinite limits

Computing standard limits

Graph asymptotes (vertical, horizontal, skew).

Definition of continuous, and how to compute where functions
are discontinuous.

(Difference between the limit existing and a function being
continuous.)



Rates of change

> Average rate of change
fle+h) - f(z)
h
Limit definition of derivative

fla+h)— f(z)

! — 1
fiz) = lim Y

v

v

Computing derivatives of functions like
max + b, 2%, 23, \/z,1/2,1/2% using the limit definition.

v

Basic derivative rules: powers, scalars, sums, products,
compositions



