Recall: Our favorite exponential function

Look at how the curve $y=a^{x}$ is increasing through the point $(0,1)$:

Recall: Our favorite exponential function

Look at how the curve $y=a^{x}$ is increasing through the point $(0,1)$:

Recall: Our favorite exponential function

Look at how the curve $y=a^{x}$ is increasing through the point $(0,1)$:

Recall: Our favorite exponential function

Look at how the curve $y=a^{x}$ is increasing through the point $(0,1)$:

Recall: Our favorite exponential function

Look at how the curve $y=a^{x}$ is increasing through the point $(0,1)$:

Recall: Our favorite exponential function

Look at how the curve $y=a^{x}$ is increasing through the point $(0,1)$:

Recall: Our favorite exponential function

Look at how the curve $y=a^{x}$ is increasing through the point $(0,1)$:

Q: Is there an exponential function whose slope at $(0,1)$ is 1 ?

Recall: Our favorite exponential function

Look at how the curve $y=a^{x}$ is increasing through the point $(0,1)$:

Q: Is there an exponential function whose slope at $(0,1)$ is 1 ?

Recall: Our favorite exponential function

Look at how the curve $y=a^{x}$ is increasing through the point $(0,1)$:

Q: Is there an exponential function whose slope at $(0,1)$ is 1 ?

Recall: Our favorite exponential function

Look at how the curve $y=a^{x}$ is increasing through the point $(0,1)$:

Q: Is there an exponential function whose slope at $(0,1)$ is 1 ?
A: e^{x} is the exponential function whose slope at $(0,1)$ is 1 . ($e=2.71828183 \ldots$ is to calculus as $\pi=3.14159265 \ldots$ is to geometry)

Derivative of exponential functions

We defined e as the number such that the curve $y=e^{x}$ has slope $m=1$ at the point $(0,1)$.

Derivative of exponential functions

We defined e as the number such that the curve $y=e^{x}$ has slope $m=1$ at the point $(0,1)$.

This means

$$
1=\left.\frac{d}{d x} e^{x}\right|_{x=0}
$$

Derivative of exponential functions

We defined e as the number such that the curve $y=e^{x}$ has slope $m=1$ at the point $(0,1)$.

This means

$$
1=\left.\frac{d}{d x} e^{x}\right|_{x=0}=\lim _{h \rightarrow 0} \frac{e^{0+h}-e^{0}}{h}
$$

Derivative of exponential functions

We defined e as the number such that the curve $y=e^{x}$ has slope $m=1$ at the point $(0,1)$.

This means

$$
1=\left.\frac{d}{d x} e^{x}\right|_{x=0}=\lim _{h \rightarrow 0} \frac{e^{0+h}-e^{0}}{h}=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}
$$

Derivative of exponential functions

We defined e as the number such that the curve $y=e^{x}$ has slope $m=1$ at the point $(0,1)$.

This means

$$
1=\left.\frac{d}{d x} e^{x}\right|_{x=0}=\lim _{h \rightarrow 0} \frac{e^{0+h}-e^{0}}{h}=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}
$$

So we may take for granted that

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 \text {. }
$$

Derivative of exponential functions

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

Now, let's compute $\frac{d}{d x} e^{x}$:

Derivative of exponential functions

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

Now, let's compute $\frac{d}{d x} e^{x}$:

$$
\frac{d}{d x} e^{x}=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}
$$

Derivative of exponential functions

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

Now, let's compute $\frac{d}{d x} e^{x}$:

$$
\begin{aligned}
\frac{d}{d x} e^{x} & =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h}
\end{aligned}
$$

Derivative of exponential functions

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

Now, let's compute $\frac{d}{d x} e^{x}$:

$$
\begin{aligned}
\frac{d}{d x} e^{x} & =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h}
\end{aligned}
$$

Derivative of exponential functions

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

Now, let's compute $\frac{d}{d x} e^{x}$:

$$
\begin{aligned}
\frac{d}{d x} e^{x} & =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h}
\end{aligned}
$$

$$
=e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h} \quad(\text { since } x \text { is constant in the limit } h \rightarrow 0)
$$

Derivative of exponential functions

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

Now, let's compute $\frac{d}{d x} e^{x}$:

$$
\begin{aligned}
\frac{d}{d x} e^{x} & =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h} \\
& =e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h} \quad(\text { since } x \text { is constant in the limit } h \rightarrow 0) \\
& =e^{x} \cdot 1=e^{x}
\end{aligned}
$$

Derivative of exponential functions

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

Now, let's compute $\frac{d}{d x} e^{x}$:

$$
\begin{aligned}
\frac{d}{d x} e^{x} & =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h} \\
& =e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h} \quad(\text { since } x \text { is constant in the limit } h \rightarrow 0) \\
& =e^{x} \cdot 1=e^{x}
\end{aligned}
$$

So

$$
\frac{d}{d x} e^{x}=e^{x}
$$

Derivative of exponential functions

$$
\frac{d}{d x} e^{x}=e^{x}
$$

What about $\frac{d}{d x} a^{x}$ for other numbers a ?

Derivative of exponential functions

$$
\frac{d}{d x} e^{x}=e^{x}
$$

What about $\frac{d}{d x} a^{x}$ for other numbers a ?
Recall that $\ln (x)$ is the inverse function of e^{x}, so that

$$
e^{\ln (y)}=y
$$

Derivative of exponential functions

$$
\frac{d}{d x} e^{x}=e^{x}
$$

What about $\frac{d}{d x} a^{x}$ for other numbers a ?
Recall that $\ln (x)$ is the inverse function of e^{x}, so that

$$
e^{\ln (y)}=y
$$

Therefore,

$$
a^{x}=e^{\ln \left(a^{x}\right)}
$$

Derivative of exponential functions

$$
\frac{d}{d x} e^{x}=e^{x}
$$

What about $\frac{d}{d x} a^{x}$ for other numbers a ?
Recall that $\ln (x)$ is the inverse function of e^{x}, so that

$$
e^{\ln (y)}=y
$$

Therefore,

$$
a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \ln (a)}, \quad \text { since } \ln \left(a^{x}\right)=x \ln (a)
$$

Recall chain rule: $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.

Derivative of exponential functions

$$
\frac{d}{d x} e^{x}=e^{x}
$$

What about $\frac{d}{d x} a^{x}$ for other numbers a ?
Recall that $\ln (x)$ is the inverse function of e^{x}, so that

$$
e^{\ln (y)}=y
$$

Therefore,

$$
a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \ln (a)}, \quad \text { since } \ln \left(a^{x}\right)=x \ln (a)
$$

Recall chain rule: $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Here, we can write

$$
f(x)=e^{x} \text { and } g(x)=\ln (a) x
$$

Derivative of exponential functions

$$
\frac{d}{d x} e^{x}=e^{x}
$$

What about $\frac{d}{d x} a^{x}$ for other numbers a ?
Recall that $\ln (x)$ is the inverse function of e^{x}, so that

$$
e^{\ln (y)}=y
$$

Therefore,

$$
a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \ln (a)}, \quad \text { since } \ln \left(a^{x}\right)=x \ln (a)
$$

Recall chain rule: $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Here, we can write

$$
f(x)=e^{x} \text { and } g(x)=\ln (a) x \quad \text { so that } f(g(x))=e^{\ln (a) x}=a^{x} .
$$

Derivative of exponential functions

$$
\frac{d}{d x} e^{x}=e^{x}
$$

What about $\frac{d}{d x} a^{x}$ for other numbers a ?
Recall that $\ln (x)$ is the inverse function of e^{x}, so that

$$
e^{\ln (y)}=y
$$

Therefore,

$$
a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \ln (a)}, \quad \text { since } \ln \left(a^{x}\right)=x \ln (a)
$$

Recall chain rule: $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Here, we can write

$$
f(x)=e^{x} \text { and } g(x)=\ln (a) x \quad \text { so that } f(g(x))=e^{\ln (a) x}=a^{x} .
$$

Thus, since

$$
f^{\prime}(x)=e^{x}, \quad g^{\prime}(x)=\ln (a),
$$

Derivative of exponential functions

$$
\frac{d}{d x} e^{x}=e^{x}
$$

What about $\frac{d}{d x} a^{x}$ for other numbers a ?
Recall that $\ln (x)$ is the inverse function of e^{x}, so that

$$
e^{\ln (y)}=y
$$

Therefore,

$$
a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \ln (a)}, \quad \text { since } \ln \left(a^{x}\right)=x \ln (a)
$$

Recall chain rule: $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Here, we can write

$$
f(x)=e^{x} \text { and } g(x)=\ln (a) x \quad \text { so that } f(g(x))=e^{\ln (a) x}=a^{x} .
$$

Thus, since

$$
f^{\prime}(x)=e^{x}, \quad g^{\prime}(x)=\ln (a), \quad \text { and } \quad f^{\prime}(g(x))=e^{\ln (a) x}=a^{x},
$$

Derivative of exponential functions

$$
\frac{d}{d x} e^{x}=e^{x}
$$

What about $\frac{d}{d x} a^{x}$ for other numbers a ?
Recall that $\ln (x)$ is the inverse function of e^{x}, so that

$$
e^{\ln (y)}=y
$$

Therefore,

$$
a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \ln (a)}, \quad \text { since } \ln \left(a^{x}\right)=x \ln (a)
$$

Recall chain rule: $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Here, we can write

$$
f(x)=e^{x} \text { and } g(x)=\ln (a) x \quad \text { so that } f(g(x))=e^{\ln (a) x}=a^{x}
$$

Thus, since

$$
f^{\prime}(x)=e^{x}, \quad g^{\prime}(x)=\ln (a), \quad \text { and } \quad f^{\prime}(g(x))=e^{\ln (a) x}=a^{x}
$$

we have

$$
\frac{d}{d x} a^{x}=f^{\prime}(g(x)) \cdot g^{\prime}(x)=a^{x} \cdot \ln (a) \text {. }
$$

Derivative of exponential functions

$$
\frac{d}{d x} e^{x}=e^{x}
$$

$$
\frac{d}{d x} a^{x}=a^{x} \cdot \ln (a)
$$

Note: $\ln (e)=1$, so these rules agree when $a=e$.
You try: Compute the derivatives of the following equations.

1. $f(x)=2^{x}$
2. $f(x)=3^{x}$
3. $f(x)=(1 / 5)^{x}$
4. $f(x)=(2 e)^{x}$
5. $f(x)=e^{2 x+1}$
6. $f(x)=3^{4 x^{2}-5 x+e^{x}}$

Derivative of exponential functions

$$
\frac{d}{d x} e^{x}=e^{x} \quad \frac{d}{d x} a^{x}=a^{x} \cdot \ln (a)
$$

Note: $\ln (e)=1$, so these rules agree when $a=e$.
You try: Compute the derivatives of the following equations.

1. $f(x)=2^{x}$
2. $f(x)=3^{x}$
3. $f(x)=(1 / 5)^{x}$
4. $f(x)=(2 e)^{x}$
5. $f(x)=e^{2 x+1}$
6. $f(x)=3^{4 x^{2}-5 x+e^{x}}$

Ans: $2^{x} \cdot \ln (2)$
Ans: $3^{x} \cdot \ln (3)$ Ans: $-\frac{\ln (5)}{5^{x}}$

Ans: $(2 e)^{x} \cdot(\ln (2)+1)$
Ans: $2 e^{2 x+1}$
Ans: $\quad 3^{4 x^{2}-5 x+e^{x}} \cdot \ln (3) \cdot(8 x-5)$

Some applications of derivatives

Let x_{0} be a real number. The instantaneous rate of change of $f(x)$ with respect to x, at x_{0}, is the derivative

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Some applications of derivatives

Let x_{0} be a real number. The instantaneous rate of change of $f(x)$ with respect to x, at x_{0}, is the derivative

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Example. The area of a circle of radius r is $A=\pi r^{2}$.

Some applications of derivatives

Let x_{0} be a real number. The instantaneous rate of change of $f(x)$ with respect to x, at x_{0}, is the derivative

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Example. The area of a circle of radius r is $A=\pi r^{2}$. Suppose the radius of a circle is varying-how do the area vary with respect to the change in radius?

Some applications of derivatives

Let x_{0} be a real number. The instantaneous rate of change of $f(x)$ with respect to x, at x_{0}, is the derivative

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Example. The area of a circle of radius r is $A=\pi r^{2}$. Suppose the radius of a circle is varying-how do the area vary with respect to the change in radius?

Variable: $r \quad$ Function: $A=A(r)$

Some applications of derivatives

Let x_{0} be a real number. The instantaneous rate of change of $f(x)$ with respect to x, at x_{0}, is the derivative

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Example. The area of a circle of radius r is $A=\pi r^{2}$. Suppose the radius of a circle is varying-how do the area vary with respect to the change in radius?

$$
\text { Variable: } r \quad \text { Function: } A=A(r)
$$

Answer:

$$
\frac{d}{d r} A
$$

Some applications of derivatives

Let x_{0} be a real number. The instantaneous rate of change of $f(x)$ with respect to x, at x_{0}, is the derivative

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Example. The area of a circle of radius r is $A=\pi r^{2}$. Suppose the radius of a circle is varying-how do the area vary with respect to the change in radius?

$$
\text { Variable: } r \quad \text { Function: } A=A(r)
$$

Answer:

$$
\frac{d}{d r} A=\frac{d}{d r}\left(\pi r^{2}\right)=2 \pi r .
$$

Some applications of derivatives

Example. The area of a circle of radius r is $A=\pi r^{2}$. Suppose the radius of a circle is varying-how do the area vary with respect to the change in radius?

$$
\text { Variable: } r \quad \text { Function: } A=A(r)
$$

Answer:

$$
\frac{d}{d r} A=\frac{d}{d r}\left(\pi r^{2}\right)=2 \pi r
$$

Question: What is the rate of change of the area with respect to the radius when the radius is 5 m ?

Some applications of derivatives

Example. The area of a circle of radius r is $A=\pi r^{2}$. Suppose the radius of a circle is varying-how do the area vary with respect to the change in radius?

$$
\text { Variable: } r \quad \text { Function: } A=A(r)
$$

Answer:

$$
\frac{d}{d r} A=\frac{d}{d r}\left(\pi r^{2}\right)=2 \pi r
$$

Question: What is the rate of change of the area with respect to the radius when the radius is 5 m ?
Answer:

$$
\left.\frac{d}{d r} A\right|_{r=5}
$$

Some applications of derivatives

Example. The area of a circle of radius r is $A=\pi r^{2}$. Suppose the radius of a circle is varying-how do the area vary with respect to the change in radius?

$$
\text { Variable: } r \quad \text { Function: } A=A(r)
$$

Answer:

$$
\frac{d}{d r} A=\frac{d}{d r}\left(\pi r^{2}\right)=2 \pi r
$$

Question: What is the rate of change of the area with respect to the radius when the radius is 5 m ?
Answer:

$$
\left.\frac{d}{d r} A\right|_{r=5}=\left.2 \pi r\right|_{r=5}=10 \pi
$$

Question: Suppose the radius is changing at a rate of $7 \mathrm{~m} / \mathrm{s}$. How fast is the area changing when the radius is 5 m ?

Some applications of derivatives

Example. The area of a circle of radius r is $A=\pi r^{2}$. Suppose the radius of a circle is varying-how do the area vary with respect to the change in radius?

$$
\text { Variable: } r \quad \text { Function: } A=A(r)
$$

Answer:

$$
\frac{d}{d r} A=\frac{d}{d r}\left(\pi r^{2}\right)=2 \pi r
$$

Question: What is the rate of change of the area with respect to the radius when the radius is 5 m ?
Answer:

$$
\left.\frac{d}{d r} A\right|_{r=5}=\left.2 \pi r\right|_{r=5}=10 \pi
$$

Question: Suppose the radius is changing at a rate of $7 \mathrm{~m} / \mathrm{s}$. How fast is the area changing when the radius is 5 m ?

$$
\text { Variable: } t \quad \text { Function: } A=A(r(t))=\pi(r(t))^{2}
$$

Some applications of derivatives

Question: Suppose the radius is changing at a rate of $7 \mathrm{~m} / \mathrm{s}$. How fast is the area changing when the radius is 5 m ?

$$
\text { Variable: } t \quad \text { Function: } A=A(r(t))=\pi(r(t))^{2}
$$

Answer:

$$
\frac{d}{d t} A=\frac{d}{d t} A(r(t))
$$

Some applications of derivatives

Question: Suppose the radius is changing at a rate of $7 \mathrm{~m} / \mathrm{s}$. How fast is the area changing when the radius is 5 m ?

$$
\text { Variable: } t \quad \text { Function: } A=A(r(t))=\pi(r(t))^{2}
$$

Answer:

$$
\frac{d}{d t} A=\frac{d}{d t} A(r(t))=\underbrace{\frac{d A}{d r} \cdot \frac{d r}{d t}}_{\text {Use Leibnitz notation! }}
$$

Some applications of derivatives

Question: Suppose the radius is changing at a rate of $7 \mathrm{~m} / \mathrm{s}$. How fast is the area changing when the radius is 5 m ?

$$
\text { Variable: } t \quad \text { Function: } A=A(r(t))=\pi(r(t))^{2}
$$

Answer:

$$
\frac{d}{d t} A=\frac{d}{d t} A(r(t))=\underbrace{\frac{d A}{d r} \cdot \frac{d r}{d t}}_{\text {Use Leibnitz notation! }}=(2 \pi r(t)) r^{\prime}(t) .
$$

Some applications of derivatives

Question: Suppose the radius is changing at a rate of $7 \mathrm{~m} / \mathrm{s}$. How fast is the area changing when the radius is 5 m ?

$$
\text { Variable: } t \quad \text { Function: } A=A(r(t))=\pi(r(t))^{2}
$$

Answer:

$$
\frac{d}{d t} A=\frac{d}{d t} A(r(t))=\underbrace{\frac{d A}{d r} \cdot \frac{d r}{d t}}_{\text {Use Leibnitz notation! }}=(2 \pi r(t)) r^{\prime}(t)
$$

We don't know what time t_{0} we care about, but we do know that at that (mystery) time,

$$
r\left(t_{0}\right)=5 \quad \text { and } \quad r^{\prime}\left(t_{0}\right)=7
$$

Some applications of derivatives

Question: Suppose the radius is changing at a rate of $7 \mathrm{~m} / \mathrm{s}$. How fast is the area changing when the radius is 5 m ?

$$
\text { Variable: } t \quad \text { Function: } A=A(r(t))=\pi(r(t))^{2}
$$

Answer:

$$
\frac{d}{d t} A=\frac{d}{d t} A(r(t))=\underbrace{\frac{d A}{d r} \cdot \frac{d r}{d t}}=(2 \pi r(t)) r^{\prime}(t)
$$

Use Leibnitz notation!
We don't know what time t_{0} we care about, but we do know that at that (mystery) time,

$$
r\left(t_{0}\right)=5 \quad \text { and } \quad r^{\prime}\left(t_{0}\right)=7
$$

So

$$
\left.\frac{d}{d t} A\right|_{t=t_{0}}=2 \pi \cdot r\left(t_{0}\right) \cdot r^{\prime}\left(t_{0}\right)=2 \pi \cdot 5 \cdot 7=70 \pi .
$$

Some applications of derivatives

Question: Suppose the radius is changing at a rate of $7 \mathrm{~m} / \mathrm{s}$. How fast is the area changing when the radius is 5 m ?

$$
\text { Variable: } t \quad \text { Function: } A=A(r(t))=\pi(r(t))^{2}
$$

Answer:

$$
\frac{d}{d t} A=\frac{d}{d t} A(r(t))=\underbrace{\frac{d A}{d r} \cdot \frac{d r}{d t}}_{\text {Use Leibnitz notation! }}=(2 \pi r(t)) r^{\prime}(t)
$$

We don't know what time t_{0} we care about, but we do know that at that (mystery) time,

$$
r\left(t_{0}\right)=5 \quad \text { and } \quad r^{\prime}\left(t_{0}\right)=7
$$

So

$$
\left.\frac{d}{d t} A\right|_{t=t_{0}}=2 \pi \cdot r\left(t_{0}\right) \cdot r^{\prime}\left(t_{0}\right)=2 \pi \cdot 5 \cdot 7=70 \pi .
$$

Look up "related rates" online.

Motion Along a Line

Let an object move (in time) back and forth along a line according to the function

$$
s=f(t) . \quad \longrightarrow
$$

Motion Along a Line

Let an object move (in time) back and forth along a line according to the function

$$
s=f(t) . \quad \quad \begin{gathered}
s=f(t)
\end{gathered}
$$

The displacement of the object over the time interval from t to $t+\Delta t$ is

$$
\Delta s=f(t+\Delta t)-f(t)
$$

Motion Along a Line

Let an object move (in time) back and forth along a line according to the function

$$
s=f(t) . \quad \xrightarrow[s=f(t)]{ }
$$

The displacement of the object over the time interval from t to $t+\Delta t$ is

$$
\Delta s=f(t+\Delta t)-f(t)
$$

Of course, we could graph s versus t to get a 2-d picture, but the object is still just moving in 1 dimension...

Motion Along a Line

Let an object move (in time) back and forth along a line according to the function

$$
s=f(t) . \quad \underset{s=f(t)}{0}
$$

The displacement of the object over the time interval from t to $t+\Delta t$ is

The average velocity of the object over that time interval is

$$
v_{\mathrm{av}}=\frac{\text { displacement }}{\text { time }}=\frac{\Delta s}{\Delta t}
$$

Motion Along a Line

Let an object move (in time) back and forth along a line according to the function

$$
s=f(t) . \quad \xrightarrow[s=f(t)]{ }
$$

The displacement of the object over the time interval from t to $t+\Delta t$ is

$$
\Delta s=f(t+\Delta t)-f(t) . \quad \xrightarrow[s=f(t)]{\stackrel{\text { Position at time } t \ldots}{\longleftrightarrow} \xrightarrow[s+\Delta s=f(t+\Delta t)]{\text { and at time } t+\Delta t} s \underbrace{}_{s}}
$$

The average velocity of the object over that time interval is

$$
v_{\mathrm{av}}=\frac{\text { displacement }}{\text { time }}=\frac{\Delta s}{\Delta t}=\frac{f(t+\Delta t)-f(t)}{\Delta t}
$$

(Think: Δt is just like h from before!)

Motion Along a Line

Let an object move (in time) back and forth along a line according to the function

$$
s=f(t) . \quad \xrightarrow[s=f(t)]{ }
$$

The displacement of the object over the time interval from t to $t+\Delta t$ is

$$
\Delta s=f(t+\Delta t)-f(t) . \quad \xrightarrow[s=f(t)]{\text { Position at time } t \ldots} \Delta s \xrightarrow[s+\Delta s=f(t+\Delta t)]{\stackrel{\text { and at time } t+\Delta t}{\longrightarrow} s}
$$

The average velocity of the object over that time interval is

$$
v_{\mathrm{av}}=\frac{\text { displacement }}{\text { time }}=\frac{\Delta s}{\Delta t}=\frac{f(t+\Delta t)-f(t)}{\Delta t}
$$

(Think: Δt is just like h from before!)
The velocity of the object as a function of time is

$$
v(t)=\frac{d s}{d t}=\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}
$$

Speed versus velocity

If the object is moving forward, the velocity is positive.

Speed versus velocity

If the object is moving forward, the velocity is positive.

Similarly, if the object is moving backwards, the velocity is negative.

Speed versus velocity

If the object is moving forward, the velocity is positive.

Similarly, if the object is moving backwards, the velocity is negative.

The speed of the object is the absolute value of velocity,

$$
\text { speed }=|v(t)|=\left|\frac{d s}{d t}\right|
$$

Change in velocity

Acceleration $a(t)$ is the change in velocity over time. Namely, it is the derivative of velocity with respect to time:

$$
a(t)=\frac{d}{d t} v(t)=\frac{d^{2}}{d t^{2}} s(t)
$$

Change in velocity

Acceleration $a(t)$ is the change in velocity over time. Namely, it is the derivative of velocity with respect to time:

$$
a(t)=\frac{d}{d t} v(t)=\frac{d^{2}}{d t^{2}} s(t)
$$

Jerk is the change in acceleration over time, i.e. the derivative of acceleration with respect to time:

$$
j(t)=\frac{d}{d t} a(t)=\frac{d^{2}}{d t^{2}} v(t)=\frac{d^{3}}{d t^{3}} s(t) .
$$

Acceleration under gravity

Near the surface of Earth all bodies fall with the same constant acceleration:

$$
s=\frac{1}{2} g t^{2}, \quad \text { where } \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2} .
$$

(Frame of reference: positive is down.)

Acceleration under gravity

Near the surface of Earth all bodies fall with the same constant acceleration:

$$
s=\frac{1}{2} g t^{2}, \quad \text { where } \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2} .
$$

(Frame of reference: positive is down.)
Check:

$$
v=\frac{d}{d t} s
$$

Acceleration under gravity

Near the surface of Earth all bodies fall with the same constant acceleration:

$$
s=\frac{1}{2} g t^{2}, \quad \text { where } \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2} .
$$

(Frame of reference: positive is down.)
Check:

$$
v=\frac{d}{d t} s=\frac{d}{d t}\left(\frac{1}{2} g t^{2}\right)
$$

Acceleration under gravity

t (seconds)	s (meters)
$t=0$	-0
$t=1$	-5
	- 10
	- 15
$t=2$	- 20
	-25
	- 30
	-35
	-40
$t=3$	-45
	\downarrow

Near the surface of Earth all bodies fall with the same constant acceleration:

$$
s=\frac{1}{2} g t^{2}, \quad \text { where } \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

(Frame of reference: positive is down.)
Check:

$$
v=\frac{d}{d t} s=\frac{d}{d t}\left(\frac{1}{2} g t^{2}\right)=\frac{1}{2} \cdot g \cdot 2 t
$$

Acceleration under gravity

t (seconds)	s (meters)
$t=0$	-0
$t=1$	-5
	- 10
	- 15
$t=2$	- 20
	-25
	- 30
	-35
	-40
$t=3$	-45
	\downarrow

Near the surface of Earth all bodies fall with the same constant acceleration:

$$
s=\frac{1}{2} g t^{2}, \quad \text { where } \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

(Frame of reference: positive is down.)
Check:

$$
v=\frac{d}{d t} s=\frac{d}{d t}\left(\frac{1}{2} g t^{2}\right)=\frac{1}{2} \cdot g \cdot 2 t=g t .
$$

Acceleration under gravity

t (seconds)	s (meters)
$t=0$	-0
$t=1$	-5
	- 10
	- 15
$t=2$	- 20
	-25
	- 30
	-35
	-40
$t=3$	-45

Near the surface of Earth all bodies fall with the same constant acceleration:

$$
s=\frac{1}{2} g t^{2}, \quad \text { where } \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

(Frame of reference: positive is down.)
Check:

$$
\begin{aligned}
v=\frac{d}{d t} s & =\frac{d}{d t}\left(\frac{1}{2} g t^{2}\right)=\frac{1}{2} \cdot g \cdot 2 t=g t . \\
a & =\frac{d}{d t} v
\end{aligned}
$$

Acceleration under gravity

t (seconds)	s (meters)
$t=0$	-0
$t=1$	-5
	- 10
	- 15
$t=2$	- 20
	- 25
	-30
	-35
	-40
$t=3$	-45
	\downarrow

Near the surface of Earth all bodies fall with the same constant acceleration:

$$
s=\frac{1}{2} g t^{2}, \quad \text { where } \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

(Frame of reference: positive is down.)
Check:

$$
\begin{gathered}
v=\frac{d}{d t} s=\frac{d}{d t}\left(\frac{1}{2} g t^{2}\right)=\frac{1}{2} \cdot g \cdot 2 t=g t . \\
a=\frac{d}{d t} v=\frac{d}{d t} g t
\end{gathered}
$$

Acceleration under gravity

Near the surface of Earth all bodies fall with the same constant acceleration:

$$
s=\frac{1}{2} g t^{2}, \quad \text { where } \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

(Frame of reference: positive is down.)
Check:

$$
\begin{gathered}
v=\frac{d}{d t} s=\frac{d}{d t}\left(\frac{1}{2} g t^{2}\right)=\frac{1}{2} \cdot g \cdot 2 t=g t . \\
a=\frac{d}{d t} v=\frac{d}{d t} g t=g . \quad \checkmark
\end{gathered}
$$

Example: We drop a ball from a very high tower. How far has it fallen after 10 seconds? How fast is it going at that point?

Acceleration under gravity

Near the surface of Earth all bodies fall with the same constant acceleration:

$$
s=\frac{1}{2} g t^{2}, \quad \text { where } \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

(Frame of reference: positive is down.)
Check:

$$
\begin{gathered}
v=\frac{d}{d t} s=\frac{d}{d t}\left(\frac{1}{2} g t^{2}\right)=\frac{1}{2} \cdot g \cdot 2 t=g t . \\
a=\frac{d}{d t} v=\frac{d}{d t} g t=g . \quad \checkmark
\end{gathered}
$$

Example: We drop a ball from a very high tower. How far has it fallen after 10 seconds? How fast is it going at that point?
Ans.

$$
s(10)=\frac{1}{2} \cdot g \cdot(10)^{2}=980 / 2 \text { meters, } \quad v(10)=g(t)=98 \mathrm{~m} / \mathrm{s}
$$

Acceleration under gravity

Near the surface of Earth, the vertical trajectory of a body is given by

$$
s(t)=\frac{1}{2} g t^{2}+v_{0} t+s_{0}
$$

where

$$
\begin{gathered}
g=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
v_{0}=\text { initial velocity }(\mathrm{m} / \mathrm{s}), \text { and } \\
s_{0}=\text { initial position }(\mathrm{m})
\end{gathered}
$$

(Frame of reference: positive is up.)

Acceleration under gravity

Near the surface of Earth, the vertical trajectory of a body is given by

$$
s(t)=\frac{1}{2} g t^{2}+v_{0} t+s_{0}
$$

where

$$
\begin{gathered}
g=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
v_{0}=\text { initial velocity }(\mathrm{m} / \mathrm{s}), \text { and } \\
s_{0}=\text { initial position }(\mathrm{m})
\end{gathered}
$$

(Frame of reference: positive is up.)
Example. A cannonball is shot up in the air from 1 meter above the ground at an initial velocity of $400 \mathrm{~m} / \mathrm{s}$.
(1) What is the maximum height that the ball reaches?
(2) When does the ball hit the ground?

Acceleration under gravity

Near the surface of Earth, the vertical trajectory of a body is given by

$$
s(t)=\frac{1}{2} g t^{2}+v_{0} t+s_{0}
$$

where

$$
\begin{gathered}
g=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
v_{0}=\text { initial velocity }(\mathrm{m} / \mathrm{s}), \text { and } \\
s_{0}=\text { initial position }(\mathrm{m})
\end{gathered}
$$

(Frame of reference: positive is up.)
Example. A cannonball is shot up in the air from 1 meter above the ground at an initial velocity of $400 \mathrm{~m} / \mathrm{s}$.
(1) What is the maximum height that the ball reaches?

This happens when $v=0$.
(2) When does the ball hit the ground?

This happens when $s=0$.

Acceleration under gravity

Near the surface of Earth, the vertical trajectory of a body is given by

$$
s(t)=\frac{1}{2} g t^{2}+v_{0} t+s_{0}
$$

where

$$
\begin{gathered}
g=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
v_{0}=\text { initial velocity }(\mathrm{m} / \mathrm{s}), \text { and } \\
s_{0}=\text { initial position }(\mathrm{m})
\end{gathered}
$$

(Frame of reference: positive is up.)
Example. A cannonball is shot up in the air from 1 meter above the ground at an initial velocity of $400 \mathrm{~m} / \mathrm{s}$.
(1) What is the maximum height that the ball reaches?

This happens when $v=0$.
(2) When does the ball hit the ground?

This happens when $s=0$.

$$
\text { Use } s(t)=\frac{1}{2}(-9.8) t^{2}+400 t+1 \text {. }
$$

Rates of change in economics

Let's consider the cost of production $c(x)$ as a function of x, the number of units produced. (The first thing is expensive to make; manufacturing in bulk can be more efficient.)

Rates of change in economics

Let's consider the cost of production $c(x)$ as a function of x, the number of units produced. (The first thing is expensive to make; manufacturing in bulk can be more efficient.) If you're already producing x things, the average cost of producing h more units is

$$
\frac{c(x+h)-c(x)}{h}=\frac{\text { extra cost of producing } h \text { more things }}{\text { number of extra things }} .
$$

Rates of change in economics

Let's consider the cost of production $c(x)$ as a function of x, the number of units produced. (The first thing is expensive to make; manufacturing in bulk can be more efficient.) If you're already producing x things, the average cost of producing h more units is

$$
\frac{c(x+h)-c(x)}{h}=\frac{\text { extra cost of producing } h \text { more things }}{\text { number of extra things }} .
$$

Then the marginal cost of production is

$$
\text { marginal cost }=\lim _{h \rightarrow 0} \frac{c(x+h)-c(x)}{h}=\frac{d}{d x} c(x)
$$

Rates of change in economics

Let's consider the cost of production $c(x)$ as a function of x, the number of units produced. (The first thing is expensive to make; manufacturing in bulk can be more efficient.) If you're already producing x things, the average cost of producing h more units is

$$
\frac{c(x+h)-c(x)}{h}=\frac{\text { extra cost of producing } h \text { more things }}{\text { number of extra things }} .
$$

Then the marginal cost of production is

$$
\text { marginal cost }=\lim _{h \rightarrow 0} \frac{c(x+h)-c(x)}{h}=\frac{d}{d x} c(x) .
$$

(Sometimes, h isn't relatively small compared to x, in which case we can only really look as small as $h=1$.)

Rates of change in economics

Let's consider the cost of production $c(x)$ as a function of x, the number of units produced. (The first thing is expensive to make; manufacturing in bulk can be more efficient.) If you're already producing x things, the average cost of producing h more units is

$$
\frac{c(x+h)-c(x)}{h}=\frac{\text { extra cost of producing } h \text { more things }}{\text { number of extra things }} .
$$

Then the marginal cost of production is

$$
\text { marginal cost }=\lim _{h \rightarrow 0} \frac{c(x+h)-c(x)}{h}=\frac{d}{d x} c(x) .
$$

(Sometimes, h isn't relatively small compared to x, in which case we can only really look as small as $h=1$.)

Read examples 5 and 6 in the book.

Rates of change in economics

Let's consider the cost of production $c(x)$ as a function of x, the number of units produced. (The first thing is expensive to make; manufacturing in bulk can be more efficient.) If you're already producing x things, the average cost of producing h more units is

$$
\frac{c(x+h)-c(x)}{h}=\frac{\text { extra cost of producing } h \text { more things }}{\text { number of extra things }} .
$$

Then the marginal cost of production is

$$
\text { marginal cost }=\lim _{h \rightarrow 0} \frac{c(x+h)-c(x)}{h}=\frac{d}{d x} c(x) .
$$

(Sometimes, h isn't relatively small compared to x, in which case we can only really look as small as $h=1$.)

Read examples 5 and 6 in the book.
See also "sensitivity to change", e.g. with genetic data.
(Example 7)

Review

- Functions, basic graphs, graph transformations
- Domains and ranges
- Trig functions and identities, inverse trig functions
- Exponential functions, logarithms, and identities
- Limits
- one- and two-sided
- when are they defined
- computing them
- Asymptotes
- Continuity
- Average rate of change
- Limit definition of derivatives
- polynomials, roots, reciprocals
- Basic derivative rules
- powers, scalars, sums, products, compositions

Functions, basic graphs, graph transformations

Know basic graphs of

$$
\begin{array}{lll}
m x+b, & x^{2}, & x^{3}, \\
1 / x, & x^{4} \\
1 / x^{2}, & \sqrt{x}, & \sqrt[3]{x}
\end{array}
$$

If you know the graph of $y=f(x)$, also know the graphs of

$$
f(x+c), \quad f(c x), \quad c f(x), \quad f(x)+c, \quad 1 / f(x)
$$

Also know how graph transformations affect domain and range.

Trig functions and identities, inverse trig functions

- Graphs of $\sin (x)$ and $\cos (x)$
- How to use the unit circle
- Special values
- Angle addition formulas
- How to compute $\tan (x), \csc (x), \sec (x), \cot (x)$ and their graphs

Exponential functions, logarithms, and identities

- Graphs of a^{x} for $a>0$ and for $a<0$
- What is e ?
- Identities like $a^{x+y}=a^{x} a^{y}$, etc.
- Graphs of $\log _{a}(x)$. What is $\ln (x)$?
- Identities like $\ln (x y)=\ln (x)+\ln (y)$.
- Exponential growth.

Limits and continuity

- One sided limits, from the left or right
- Two-sided limits
- Limits at $\pm \infty$
- Infinite limits
- Computing standard limits
- Graph asymptotes (vertical, horizontal, skew).
- Definition of continuous, and how to compute where functions are discontinuous.
(Difference between the limit existing and a function being continuous.)

Rates of change

- Average rate of change

$$
\frac{f(x+h)-f(x)}{h}
$$

- Limit definition of derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Computing derivatives of functions like $m x+b, x^{2}, x^{3}, \sqrt{x}, 1 / x, 1 / x^{2}$ using the limit definition.
- Basic derivative rules: powers, scalars, sums, products, compositions

