
Recall: Our favorite exponential function
Look at how the curve y = ax is increasing through the point
(0, 1):

y = ax :

a=1.1

a=1.5

a=2
a=3

a=10

Q: Is there an exponential function whose slope at (0,1) is 1?
A: ex is the exponential function whose slope at (0,1) is 1.

(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)
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Recall: Our favorite exponential function
Look at how the curve y = ax is increasing through the point
(0, 1):

y = ax :

a=2

Q: Is there an exponential function whose slope at (0,1) is 1?
A: ex is the exponential function whose slope at (0,1) is 1.

(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)



Recall: Our favorite exponential function
Look at how the curve y = ax is increasing through the point
(0, 1):

y = ax :
a=3

Q: Is there an exponential function whose slope at (0,1) is 1?
A: ex is the exponential function whose slope at (0,1) is 1.

(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)



Recall: Our favorite exponential function
Look at how the curve y = ax is increasing through the point
(0, 1):

y = ax :

a=10

Q: Is there an exponential function whose slope at (0,1) is 1?
A: ex is the exponential function whose slope at (0,1) is 1.

(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)
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Recall: Our favorite exponential function
Look at how the curve y = ax is increasing through the point
(0, 1):

y = ax :

a=2.71828183...

Q: Is there an exponential function whose slope at (0,1) is 1?

A: ex is the exponential function whose slope at (0,1) is 1.
(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)



Recall: Our favorite exponential function
Look at how the curve y = ax is increasing through the point
(0, 1):

y = ax :

e=2.71828183...

Q: Is there an exponential function whose slope at (0,1) is 1?
A: ex is the exponential function whose slope at (0,1) is 1.

(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)



Derivative of exponential functions

We defined e as the number such that the curve y = ex has slope
m = 1 at the point (0, 1).

e=2.71828183...

This means

1 =
d

dx
ex
∣∣∣
x=0

= lim
h→0

e0+h − e0

h
= lim

h→0

eh − 1

h
.

So we may take for granted that

lim
h→0

eh − 1

h
= 1 .
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m = 1 at the point (0, 1).
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Derivative of exponential functions

lim
h→0

eh − 1

h
= 1

Now, let’s compute d
dxe

x:

d

dx
ex = lim

h→0

ex+h − ex

h

= lim
h→0

exeh − ex

h

= lim
h→0

ex(eh − 1)

h

= ex lim
h→0

eh − 1

h
(since x is constant in the limit h→ 0)

= ex · 1 = ex.

So
d
dxe

x = ex .
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Derivative of exponential functions
d
dxe

x = ex

What about d
dxa

x for other numbers a?

Recall that ln(x) is the inverse function of ex, so that

eln(y) = y.

Therefore,

ax = eln(ax) = ex ln(a), since ln(ax) = x ln(a).

Recall chain rule:
d

dx
f(g(x)) = f ′(g(x)) · g′(x) .

Here, we can write

f(x) = ex and g(x) = ln(a)x so that f(g(x)) = eln(a)x = ax.

Thus, since

f ′(x) = ex, g′(x) = ln(a), and f ′(g(x)) = eln(a)x = ax,

we have

d

dx
ax = f ′(g(x)) · g′(x) = ax · ln(a) .
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Derivative of exponential functions

d
dxe

x = ex d
dxa

x = ax · ln(a)

Note: ln(e) = 1, so these rules agree when a = e. X

You try: Compute the derivatives of the following equations.

1. f(x) = 2x

Ans: 2x · ln(2)

2. f(x) = 3x

Ans: 3x · ln(3)

3. f(x) = (1/5)x

Ans: − ln(5)
5x

4. f(x) = (2e)x

Ans: (2e)x · (ln(2) + 1)

5. f(x) = e2x+1

Ans: 2e2x+1

6. f(x) = 34x2−5x+ex

Ans: 34x2−5x+ex · ln(3) · (8x− 5)
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Some applications of derivatives
Let x0 be a real number. The instantaneous rate of change of
f(x) with respect to x, at x0, is the derivative

f ′(x0) = lim
h→0

f(x+ h)− f(x)

h
.

Example. The area of a circle of radius r is A = πr2. Suppose
the radius of a circle is varying—how do the area vary with respect
to the change in radius?

Variable: r Function: A = A(r)

Answer:
d

dr
A =

d

dr
(πr2) = 2πr.

Question: What is the rate of change of the area with respect to
the radius when the radius is 5 m?
Answer:

d

dr
A
∣∣∣
r=5

= 2πr
∣∣∣
r=5

= 10π.

Question: Suppose the radius is changing at a rate of 7 m/s. How
fast is the area changing when the radius is 5m?

Variable: t Function: A = A(r(t)) = π(r(t))2



Some applications of derivatives
Let x0 be a real number. The instantaneous rate of change of
f(x) with respect to x, at x0, is the derivative

f ′(x0) = lim
h→0

f(x+ h)− f(x)

h
.

Example. The area of a circle of radius r is A = πr2.

Suppose
the radius of a circle is varying—how do the area vary with respect
to the change in radius?

Variable: r Function: A = A(r)

Answer:
d

dr
A =

d

dr
(πr2) = 2πr.

Question: What is the rate of change of the area with respect to
the radius when the radius is 5 m?
Answer:

d

dr
A
∣∣∣
r=5

= 2πr
∣∣∣
r=5

= 10π.

Question: Suppose the radius is changing at a rate of 7 m/s. How
fast is the area changing when the radius is 5m?

Variable: t Function: A = A(r(t)) = π(r(t))2



Some applications of derivatives
Let x0 be a real number. The instantaneous rate of change of
f(x) with respect to x, at x0, is the derivative

f ′(x0) = lim
h→0

f(x+ h)− f(x)

h
.

Example. The area of a circle of radius r is A = πr2. Suppose
the radius of a circle is varying—how do the area vary with respect
to the change in radius?

Variable: r Function: A = A(r)

Answer:
d

dr
A =

d

dr
(πr2) = 2πr.

Question: What is the rate of change of the area with respect to
the radius when the radius is 5 m?
Answer:

d

dr
A
∣∣∣
r=5

= 2πr
∣∣∣
r=5

= 10π.

Question: Suppose the radius is changing at a rate of 7 m/s. How
fast is the area changing when the radius is 5m?

Variable: t Function: A = A(r(t)) = π(r(t))2



Some applications of derivatives
Let x0 be a real number. The instantaneous rate of change of
f(x) with respect to x, at x0, is the derivative

f ′(x0) = lim
h→0

f(x+ h)− f(x)

h
.

Example. The area of a circle of radius r is A = πr2. Suppose
the radius of a circle is varying—how do the area vary with respect
to the change in radius?

Variable: r Function: A = A(r)

Answer:
d

dr
A =

d

dr
(πr2) = 2πr.

Question: What is the rate of change of the area with respect to
the radius when the radius is 5 m?
Answer:

d

dr
A
∣∣∣
r=5

= 2πr
∣∣∣
r=5

= 10π.

Question: Suppose the radius is changing at a rate of 7 m/s. How
fast is the area changing when the radius is 5m?

Variable: t Function: A = A(r(t)) = π(r(t))2



Some applications of derivatives
Let x0 be a real number. The instantaneous rate of change of
f(x) with respect to x, at x0, is the derivative

f ′(x0) = lim
h→0

f(x+ h)− f(x)

h
.

Example. The area of a circle of radius r is A = πr2. Suppose
the radius of a circle is varying—how do the area vary with respect
to the change in radius?

Variable: r Function: A = A(r)

Answer:
d

dr
A

=
d

dr
(πr2) = 2πr.

Question: What is the rate of change of the area with respect to
the radius when the radius is 5 m?
Answer:

d

dr
A
∣∣∣
r=5

= 2πr
∣∣∣
r=5

= 10π.

Question: Suppose the radius is changing at a rate of 7 m/s. How
fast is the area changing when the radius is 5m?

Variable: t Function: A = A(r(t)) = π(r(t))2



Some applications of derivatives
Let x0 be a real number. The instantaneous rate of change of
f(x) with respect to x, at x0, is the derivative

f ′(x0) = lim
h→0

f(x+ h)− f(x)

h
.

Example. The area of a circle of radius r is A = πr2. Suppose
the radius of a circle is varying—how do the area vary with respect
to the change in radius?

Variable: r Function: A = A(r)

Answer:
d

dr
A =

d

dr
(πr2) = 2πr.

Question: What is the rate of change of the area with respect to
the radius when the radius is 5 m?
Answer:

d

dr
A
∣∣∣
r=5

= 2πr
∣∣∣
r=5

= 10π.

Question: Suppose the radius is changing at a rate of 7 m/s. How
fast is the area changing when the radius is 5m?

Variable: t Function: A = A(r(t)) = π(r(t))2



Some applications of derivatives

Example. The area of a circle of radius r is A = πr2. Suppose
the radius of a circle is varying—how do the area vary with respect
to the change in radius?

Variable: r Function: A = A(r)

Answer:
d

dr
A =

d

dr
(πr2) = 2πr.

Question: What is the rate of change of the area with respect to
the radius when the radius is 5 m?

Answer:
d

dr
A
∣∣∣
r=5

= 2πr
∣∣∣
r=5

= 10π.

Question: Suppose the radius is changing at a rate of 7 m/s. How
fast is the area changing when the radius is 5m?

Variable: t Function: A = A(r(t)) = π(r(t))2



Some applications of derivatives

Example. The area of a circle of radius r is A = πr2. Suppose
the radius of a circle is varying—how do the area vary with respect
to the change in radius?

Variable: r Function: A = A(r)

Answer:
d

dr
A =

d

dr
(πr2) = 2πr.

Question: What is the rate of change of the area with respect to
the radius when the radius is 5 m?
Answer:

d

dr
A
∣∣∣
r=5

= 2πr
∣∣∣
r=5

= 10π.

Question: Suppose the radius is changing at a rate of 7 m/s. How
fast is the area changing when the radius is 5m?

Variable: t Function: A = A(r(t)) = π(r(t))2



Some applications of derivatives

Example. The area of a circle of radius r is A = πr2. Suppose
the radius of a circle is varying—how do the area vary with respect
to the change in radius?

Variable: r Function: A = A(r)

Answer:
d

dr
A =

d

dr
(πr2) = 2πr.

Question: What is the rate of change of the area with respect to
the radius when the radius is 5 m?
Answer:

d

dr
A
∣∣∣
r=5

= 2πr
∣∣∣
r=5

= 10π.

Question: Suppose the radius is changing at a rate of 7 m/s. How
fast is the area changing when the radius is 5m?

Variable: t Function: A = A(r(t)) = π(r(t))2



Some applications of derivatives

Example. The area of a circle of radius r is A = πr2. Suppose
the radius of a circle is varying—how do the area vary with respect
to the change in radius?

Variable: r Function: A = A(r)

Answer:
d

dr
A =

d

dr
(πr2) = 2πr.

Question: What is the rate of change of the area with respect to
the radius when the radius is 5 m?
Answer:

d

dr
A
∣∣∣
r=5

= 2πr
∣∣∣
r=5

= 10π.

Question: Suppose the radius is changing at a rate of 7 m/s. How
fast is the area changing when the radius is 5m?

Variable: t Function: A = A(r(t)) = π(r(t))2
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fast is the area changing when the radius is 5 m?

Variable: t Function: A = A(r(t)) = π(r(t))2

Answer:
d

dt
A =

d

dt
A(r(t))

=
dA

dr
· dr
dt︸ ︷︷ ︸

Use Leibnitz notation!

= (2πr(t))r′(t).

We don’t know what time t0 we care about, but we do know that
at that (mystery) time,

r(t0) = 5 and r′(t0) = 7.

So
d

dt
A
∣∣∣
t=t0

= 2π · r(t0) · r′(t0) = 2π · 5 · 7 = 70π .

Look up “related rates” online.
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Motion Along a Line

Let an object move (in time) back and forth along a line according
to the function

s = f(t).

3.4  The Derivative as a Rate of Change 145

Solution The rate of change of the area with respect to the diameter is

dA
dD = p

4
# 2D = pD

2 .

When D = 10 m, the area is changing with respect to the diameter at the rate of 
(p>2)10 = 5p m2>m ≈ 15.71 m2>m. 

Motion Along a Line: Displacement, Velocity, Speed, 
Acceleration, and Jerk

Suppose that an object (or body, considered as a whole mass) is moving along a coordinate 
line (an s-axis), usually horizontal or vertical, so that we know its position s on that line as 
a function of time t:

s = ƒ (t).

The displacement of the object over the time interval from t to t + ∆t (Figure 3.15) is

∆s = ƒ (t + ∆t) - ƒ (t),

and the average velocity of the object over that time interval is

yay =
displacement
travel time = ∆s

∆t
=

ƒ (t + ∆t) - ƒ (t)
∆t

.

To find the body’s velocity at the exact instant t, we take the limit of the average 
velocity over the interval from t to t + ∆t as ∆t shrinks to zero. This limit is the deriva-
tive of ƒ with respect to t.

s
Δs

Position at time t … and at time t + Δt

s =  f (t) s + Δs =  f (t + Δt)

FIGURE 3.15  The positions of a body 
moving along a coordinate line at time t 
and shortly later at time t + ∆t. Here the 
coordinate line is horizontal.

DEFINITION Velocity (instantaneous velocity) is the derivative of position 
with respect to time. If a body’s position at time t is s = ƒ (t), then the body’s 
velocity at time t is

y(t) = ds
dt = lim

∆tS0
 
ƒ (t + ∆t) - ƒ (t)

∆t
.

Besides telling how fast an object is moving along the horizontal line in Figure 3.15, 
its velocity tells the direction of motion. When the object is moving forward (s increasing), 
the velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity 
and downward for negative velocity. The blue curves in Figure 3.16 represent position 
along the line over time; they do not portray the path of motion, which lies along the verti-
cal s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 
on the way over but it will not show -30 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
velocity. Speed measures the rate of progress regardless of direction.

t

s

0
s increasing:
positive slope so
moving upward

s = f (t)

ds
dt

> 0

t

s

0
s decreasing:
negative slope so
moving downward

s = f (t)

ds
dt

< 0

(a)

(b)

FIGURE 3.16 For motion s = ƒ (t)
along a straight line (the vertical axis), 
y = ds>dt is (a) positive when s increases 
and (b) negative when s decreases.

DEFINITION Speed is the absolute value of velocity.

Speed = #y(t) # = `ds
dt `

EXAMPLE 2 Figure 3.17 shows the graph of the velocity y = ƒ ′(t) of a particle 
moving along a horizontal line (as opposed to showing a position function s = ƒ (t) such 
as in Figure 3.16). In the graph of the velocity function, it’s not the slope of the curve that 
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DEFINITION Speed is the absolute value of velocity.
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Of course, we could graph s versus t to get a 2-d picture, but the
object is still just moving in 1 dimension. . .

t

s
s = f(t)
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the velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity 
and downward for negative velocity. The blue curves in Figure 3.16 represent position 
along the line over time; they do not portray the path of motion, which lies along the verti-
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If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 
on the way over but it will not show -30 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
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Speed = #y(t) # = `ds
dt `

EXAMPLE 2 Figure 3.17 shows the graph of the velocity y = ƒ ′(t) of a particle 
moving along a horizontal line (as opposed to showing a position function s = ƒ (t) such 
as in Figure 3.16). In the graph of the velocity function, it’s not the slope of the curve that 
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Of course, we could graph s versus t to get a 2-d picture, but the
object is still just moving in 1 dimension. . .

t

s
s = f(t)



Motion Along a Line

Let an object move (in time) back and forth along a line according
to the function

s = f(t).

3.4  The Derivative as a Rate of Change 145

Solution The rate of change of the area with respect to the diameter is

dA
dD = p

4
# 2D = pD

2 .

When D = 10 m, the area is changing with respect to the diameter at the rate of 
(p>2)10 = 5p m2>m ≈ 15.71 m2>m. 

Motion Along a Line: Displacement, Velocity, Speed, 
Acceleration, and Jerk

Suppose that an object (or body, considered as a whole mass) is moving along a coordinate 
line (an s-axis), usually horizontal or vertical, so that we know its position s on that line as 
a function of time t:

s = ƒ (t).

The displacement of the object over the time interval from t to t + ∆t (Figure 3.15) is

∆s = ƒ (t + ∆t) - ƒ (t),

and the average velocity of the object over that time interval is

yay =
displacement
travel time = ∆s

∆t
=

ƒ (t + ∆t) - ƒ (t)
∆t

.

To find the body’s velocity at the exact instant t, we take the limit of the average 
velocity over the interval from t to t + ∆t as ∆t shrinks to zero. This limit is the deriva-
tive of ƒ with respect to t.

s
Δs

Position at time t … and at time t + Δt

s =  f (t) s + Δs =  f (t + Δt)

FIGURE 3.15  The positions of a body 
moving along a coordinate line at time t 
and shortly later at time t + ∆t. Here the 
coordinate line is horizontal.

DEFINITION Velocity (instantaneous velocity) is the derivative of position 
with respect to time. If a body’s position at time t is s = ƒ (t), then the body’s 
velocity at time t is

y(t) = ds
dt = lim

∆tS0
 
ƒ (t + ∆t) - ƒ (t)

∆t
.

Besides telling how fast an object is moving along the horizontal line in Figure 3.15, 
its velocity tells the direction of motion. When the object is moving forward (s increasing), 
the velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity 
and downward for negative velocity. The blue curves in Figure 3.16 represent position 
along the line over time; they do not portray the path of motion, which lies along the verti-
cal s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 
on the way over but it will not show -30 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
velocity. Speed measures the rate of progress regardless of direction.
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positive slope so
moving upward

s = f (t)

ds
dt

> 0

t

s

0
s decreasing:
negative slope so
moving downward

s = f (t)

ds
dt

< 0

(a)

(b)

FIGURE 3.16 For motion s = ƒ (t)
along a straight line (the vertical axis), 
y = ds>dt is (a) positive when s increases 
and (b) negative when s decreases.

DEFINITION Speed is the absolute value of velocity.

Speed = #y(t) # = `ds
dt `

EXAMPLE 2 Figure 3.17 shows the graph of the velocity y = ƒ ′(t) of a particle 
moving along a horizontal line (as opposed to showing a position function s = ƒ (t) such 
as in Figure 3.16). In the graph of the velocity function, it’s not the slope of the curve that 
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The displacement of the object over the time interval from t to
t+ ∆t is

∆s = f(t+ ∆t)− f(t).

3.4  The Derivative as a Rate of Change 145

Solution The rate of change of the area with respect to the diameter is

dA
dD = p

4
# 2D = pD

2 .

When D = 10 m, the area is changing with respect to the diameter at the rate of 
(p>2)10 = 5p m2>m ≈ 15.71 m2>m. 

Motion Along a Line: Displacement, Velocity, Speed, 
Acceleration, and Jerk

Suppose that an object (or body, considered as a whole mass) is moving along a coordinate 
line (an s-axis), usually horizontal or vertical, so that we know its position s on that line as 
a function of time t:

s = ƒ (t).

The displacement of the object over the time interval from t to t + ∆t (Figure 3.15) is

∆s = ƒ (t + ∆t) - ƒ (t),

and the average velocity of the object over that time interval is

yay =
displacement
travel time = ∆s

∆t
=

ƒ (t + ∆t) - ƒ (t)
∆t

.

To find the body’s velocity at the exact instant t, we take the limit of the average 
velocity over the interval from t to t + ∆t as ∆t shrinks to zero. This limit is the deriva-
tive of ƒ with respect to t.

s
Δs

Position at time t … and at time t + Δt

s =  f (t) s + Δs =  f (t + Δt)

FIGURE 3.15  The positions of a body 
moving along a coordinate line at time t 
and shortly later at time t + ∆t. Here the 
coordinate line is horizontal.

DEFINITION Velocity (instantaneous velocity) is the derivative of position 
with respect to time. If a body’s position at time t is s = ƒ (t), then the body’s 
velocity at time t is

y(t) = ds
dt = lim

∆tS0
 
ƒ (t + ∆t) - ƒ (t)

∆t
.

Besides telling how fast an object is moving along the horizontal line in Figure 3.15, 
its velocity tells the direction of motion. When the object is moving forward (s increasing), 
the velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity 
and downward for negative velocity. The blue curves in Figure 3.16 represent position 
along the line over time; they do not portray the path of motion, which lies along the verti-
cal s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 
on the way over but it will not show -30 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
velocity. Speed measures the rate of progress regardless of direction.
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s = f (t)

ds
dt

> 0
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s decreasing:
negative slope so
moving downward

s = f (t)
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< 0
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(b)

FIGURE 3.16 For motion s = ƒ (t)
along a straight line (the vertical axis), 
y = ds>dt is (a) positive when s increases 
and (b) negative when s decreases.

DEFINITION Speed is the absolute value of velocity.

Speed = #y(t) # = `ds
dt `

EXAMPLE 2 Figure 3.17 shows the graph of the velocity y = ƒ ′(t) of a particle 
moving along a horizontal line (as opposed to showing a position function s = ƒ (t) such 
as in Figure 3.16). In the graph of the velocity function, it’s not the slope of the curve that 
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The average velocity of the object over that time interval is

vav =
displacement

time
=

∆s

∆t

=
f(t+ ∆t)− f(t)

∆t
(Think: ∆t is just like h from before!)
The velocity of the object as a function of time is

v(t) =
ds

dt
= lim

∆t→0

f(t+ ∆t)− f(t)

∆t
.



Motion Along a Line

Let an object move (in time) back and forth along a line according
to the function

s = f(t).

3.4  The Derivative as a Rate of Change 145

Solution The rate of change of the area with respect to the diameter is

dA
dD = p

4
# 2D = pD

2 .

When D = 10 m, the area is changing with respect to the diameter at the rate of 
(p>2)10 = 5p m2>m ≈ 15.71 m2>m. 

Motion Along a Line: Displacement, Velocity, Speed, 
Acceleration, and Jerk

Suppose that an object (or body, considered as a whole mass) is moving along a coordinate 
line (an s-axis), usually horizontal or vertical, so that we know its position s on that line as 
a function of time t:

s = ƒ (t).

The displacement of the object over the time interval from t to t + ∆t (Figure 3.15) is

∆s = ƒ (t + ∆t) - ƒ (t),

and the average velocity of the object over that time interval is

yay =
displacement
travel time = ∆s

∆t
=

ƒ (t + ∆t) - ƒ (t)
∆t

.

To find the body’s velocity at the exact instant t, we take the limit of the average 
velocity over the interval from t to t + ∆t as ∆t shrinks to zero. This limit is the deriva-
tive of ƒ with respect to t.

s
Δs

Position at time t … and at time t + Δt

s =  f (t) s + Δs =  f (t + Δt)

FIGURE 3.15  The positions of a body 
moving along a coordinate line at time t 
and shortly later at time t + ∆t. Here the 
coordinate line is horizontal.

DEFINITION Velocity (instantaneous velocity) is the derivative of position 
with respect to time. If a body’s position at time t is s = ƒ (t), then the body’s 
velocity at time t is

y(t) = ds
dt = lim

∆tS0
 
ƒ (t + ∆t) - ƒ (t)

∆t
.

Besides telling how fast an object is moving along the horizontal line in Figure 3.15, 
its velocity tells the direction of motion. When the object is moving forward (s increasing), 
the velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity 
and downward for negative velocity. The blue curves in Figure 3.16 represent position 
along the line over time; they do not portray the path of motion, which lies along the verti-
cal s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 
on the way over but it will not show -30 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
velocity. Speed measures the rate of progress regardless of direction.
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s = f (t)

ds
dt

> 0
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s decreasing:
negative slope so
moving downward

s = f (t)
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< 0
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(b)

FIGURE 3.16 For motion s = ƒ (t)
along a straight line (the vertical axis), 
y = ds>dt is (a) positive when s increases 
and (b) negative when s decreases.

DEFINITION Speed is the absolute value of velocity.

Speed = #y(t) # = `ds
dt `

EXAMPLE 2 Figure 3.17 shows the graph of the velocity y = ƒ ′(t) of a particle 
moving along a horizontal line (as opposed to showing a position function s = ƒ (t) such 
as in Figure 3.16). In the graph of the velocity function, it’s not the slope of the curve that 

M03_HASS9020_14_SE_C03_121-220.indd   145 03/08/16   4:30 PM

The displacement of the object over the time interval from t to
t+ ∆t is

∆s = f(t+ ∆t)− f(t).

3.4  The Derivative as a Rate of Change 145

Solution The rate of change of the area with respect to the diameter is

dA
dD = p

4
# 2D = pD

2 .

When D = 10 m, the area is changing with respect to the diameter at the rate of 
(p>2)10 = 5p m2>m ≈ 15.71 m2>m. 

Motion Along a Line: Displacement, Velocity, Speed, 
Acceleration, and Jerk

Suppose that an object (or body, considered as a whole mass) is moving along a coordinate 
line (an s-axis), usually horizontal or vertical, so that we know its position s on that line as 
a function of time t:

s = ƒ (t).

The displacement of the object over the time interval from t to t + ∆t (Figure 3.15) is

∆s = ƒ (t + ∆t) - ƒ (t),

and the average velocity of the object over that time interval is

yay =
displacement
travel time = ∆s

∆t
=

ƒ (t + ∆t) - ƒ (t)
∆t

.

To find the body’s velocity at the exact instant t, we take the limit of the average 
velocity over the interval from t to t + ∆t as ∆t shrinks to zero. This limit is the deriva-
tive of ƒ with respect to t.

s
Δs

Position at time t … and at time t + Δt

s =  f (t) s + Δs =  f (t + Δt)

FIGURE 3.15  The positions of a body 
moving along a coordinate line at time t 
and shortly later at time t + ∆t. Here the 
coordinate line is horizontal.

DEFINITION Velocity (instantaneous velocity) is the derivative of position 
with respect to time. If a body’s position at time t is s = ƒ (t), then the body’s 
velocity at time t is

y(t) = ds
dt = lim

∆tS0
 
ƒ (t + ∆t) - ƒ (t)

∆t
.

Besides telling how fast an object is moving along the horizontal line in Figure 3.15, 
its velocity tells the direction of motion. When the object is moving forward (s increasing), 
the velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity 
and downward for negative velocity. The blue curves in Figure 3.16 represent position 
along the line over time; they do not portray the path of motion, which lies along the verti-
cal s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 
on the way over but it will not show -30 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
velocity. Speed measures the rate of progress regardless of direction.
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s decreasing:
negative slope so
moving downward
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< 0

(a)

(b)

FIGURE 3.16 For motion s = ƒ (t)
along a straight line (the vertical axis), 
y = ds>dt is (a) positive when s increases 
and (b) negative when s decreases.

DEFINITION Speed is the absolute value of velocity.

Speed = #y(t) # = `ds
dt `

EXAMPLE 2 Figure 3.17 shows the graph of the velocity y = ƒ ′(t) of a particle 
moving along a horizontal line (as opposed to showing a position function s = ƒ (t) such 
as in Figure 3.16). In the graph of the velocity function, it’s not the slope of the curve that 
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The average velocity of the object over that time interval is

vav =
displacement

time
=

∆s

∆t
=
f(t+ ∆t)− f(t)

∆t
(Think: ∆t is just like h from before!)

The velocity of the object as a function of time is

v(t) =
ds

dt
= lim

∆t→0

f(t+ ∆t)− f(t)

∆t
.



Motion Along a Line

Let an object move (in time) back and forth along a line according
to the function

s = f(t).

3.4  The Derivative as a Rate of Change 145

Solution The rate of change of the area with respect to the diameter is

dA
dD = p

4
# 2D = pD

2 .

When D = 10 m, the area is changing with respect to the diameter at the rate of 
(p>2)10 = 5p m2>m ≈ 15.71 m2>m. 

Motion Along a Line: Displacement, Velocity, Speed, 
Acceleration, and Jerk

Suppose that an object (or body, considered as a whole mass) is moving along a coordinate 
line (an s-axis), usually horizontal or vertical, so that we know its position s on that line as 
a function of time t:

s = ƒ (t).

The displacement of the object over the time interval from t to t + ∆t (Figure 3.15) is

∆s = ƒ (t + ∆t) - ƒ (t),

and the average velocity of the object over that time interval is

yay =
displacement
travel time = ∆s

∆t
=

ƒ (t + ∆t) - ƒ (t)
∆t

.

To find the body’s velocity at the exact instant t, we take the limit of the average 
velocity over the interval from t to t + ∆t as ∆t shrinks to zero. This limit is the deriva-
tive of ƒ with respect to t.

s
Δs

Position at time t … and at time t + Δt

s =  f (t) s + Δs =  f (t + Δt)

FIGURE 3.15  The positions of a body 
moving along a coordinate line at time t 
and shortly later at time t + ∆t. Here the 
coordinate line is horizontal.

DEFINITION Velocity (instantaneous velocity) is the derivative of position 
with respect to time. If a body’s position at time t is s = ƒ (t), then the body’s 
velocity at time t is

y(t) = ds
dt = lim

∆tS0
 
ƒ (t + ∆t) - ƒ (t)

∆t
.

Besides telling how fast an object is moving along the horizontal line in Figure 3.15, 
its velocity tells the direction of motion. When the object is moving forward (s increasing), 
the velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity 
and downward for negative velocity. The blue curves in Figure 3.16 represent position 
along the line over time; they do not portray the path of motion, which lies along the verti-
cal s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 
on the way over but it will not show -30 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
velocity. Speed measures the rate of progress regardless of direction.
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FIGURE 3.16 For motion s = ƒ (t)
along a straight line (the vertical axis), 
y = ds>dt is (a) positive when s increases 
and (b) negative when s decreases.

DEFINITION Speed is the absolute value of velocity.

Speed = #y(t) # = `ds
dt `

EXAMPLE 2 Figure 3.17 shows the graph of the velocity y = ƒ ′(t) of a particle 
moving along a horizontal line (as opposed to showing a position function s = ƒ (t) such 
as in Figure 3.16). In the graph of the velocity function, it’s not the slope of the curve that 
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The displacement of the object over the time interval from t to
t+ ∆t is

∆s = f(t+ ∆t)− f(t).

3.4  The Derivative as a Rate of Change 145

Solution The rate of change of the area with respect to the diameter is

dA
dD = p

4
# 2D = pD

2 .

When D = 10 m, the area is changing with respect to the diameter at the rate of 
(p>2)10 = 5p m2>m ≈ 15.71 m2>m. 

Motion Along a Line: Displacement, Velocity, Speed, 
Acceleration, and Jerk

Suppose that an object (or body, considered as a whole mass) is moving along a coordinate 
line (an s-axis), usually horizontal or vertical, so that we know its position s on that line as 
a function of time t:

s = ƒ (t).

The displacement of the object over the time interval from t to t + ∆t (Figure 3.15) is

∆s = ƒ (t + ∆t) - ƒ (t),

and the average velocity of the object over that time interval is

yay =
displacement
travel time = ∆s

∆t
=

ƒ (t + ∆t) - ƒ (t)
∆t

.

To find the body’s velocity at the exact instant t, we take the limit of the average 
velocity over the interval from t to t + ∆t as ∆t shrinks to zero. This limit is the deriva-
tive of ƒ with respect to t.

s
Δs

Position at time t … and at time t + Δt

s =  f (t) s + Δs =  f (t + Δt)

FIGURE 3.15  The positions of a body 
moving along a coordinate line at time t 
and shortly later at time t + ∆t. Here the 
coordinate line is horizontal.

DEFINITION Velocity (instantaneous velocity) is the derivative of position 
with respect to time. If a body’s position at time t is s = ƒ (t), then the body’s 
velocity at time t is

y(t) = ds
dt = lim

∆tS0
 
ƒ (t + ∆t) - ƒ (t)

∆t
.

Besides telling how fast an object is moving along the horizontal line in Figure 3.15, 
its velocity tells the direction of motion. When the object is moving forward (s increasing), 
the velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity 
and downward for negative velocity. The blue curves in Figure 3.16 represent position 
along the line over time; they do not portray the path of motion, which lies along the verti-
cal s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 
on the way over but it will not show -30 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
velocity. Speed measures the rate of progress regardless of direction.
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FIGURE 3.16 For motion s = ƒ (t)
along a straight line (the vertical axis), 
y = ds>dt is (a) positive when s increases 
and (b) negative when s decreases.

DEFINITION Speed is the absolute value of velocity.

Speed = #y(t) # = `ds
dt `

EXAMPLE 2 Figure 3.17 shows the graph of the velocity y = ƒ ′(t) of a particle 
moving along a horizontal line (as opposed to showing a position function s = ƒ (t) such 
as in Figure 3.16). In the graph of the velocity function, it’s not the slope of the curve that 
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The average velocity of the object over that time interval is

vav =
displacement

time
=

∆s

∆t
=
f(t+ ∆t)− f(t)

∆t
(Think: ∆t is just like h from before!)
The velocity of the object as a function of time is

v(t) =
ds

dt
= lim

∆t→0

f(t+ ∆t)− f(t)

∆t
.



Speed versus velocity

If the object is moving forward, the velocity is positive.

3.4  The Derivative as a Rate of Change 145

Solution The rate of change of the area with respect to the diameter is

dA
dD = p

4
# 2D = pD

2 .

When D = 10 m, the area is changing with respect to the diameter at the rate of 
(p>2)10 = 5p m2>m ≈ 15.71 m2>m. 

Motion Along a Line: Displacement, Velocity, Speed, 
Acceleration, and Jerk

Suppose that an object (or body, considered as a whole mass) is moving along a coordinate 
line (an s-axis), usually horizontal or vertical, so that we know its position s on that line as 
a function of time t:

s = ƒ (t).

The displacement of the object over the time interval from t to t + ∆t (Figure 3.15) is

∆s = ƒ (t + ∆t) - ƒ (t),

and the average velocity of the object over that time interval is

yay =
displacement
travel time = ∆s

∆t
=

ƒ (t + ∆t) - ƒ (t)
∆t

.

To find the body’s velocity at the exact instant t, we take the limit of the average 
velocity over the interval from t to t + ∆t as ∆t shrinks to zero. This limit is the deriva-
tive of ƒ with respect to t.

s
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Position at time t … and at time t + Δt

s =  f (t) s + Δs =  f (t + Δt)

FIGURE 3.15  The positions of a body 
moving along a coordinate line at time t 
and shortly later at time t + ∆t. Here the 
coordinate line is horizontal.

DEFINITION Velocity (instantaneous velocity) is the derivative of position 
with respect to time. If a body’s position at time t is s = ƒ (t), then the body’s 
velocity at time t is

y(t) = ds
dt = lim

∆tS0
 
ƒ (t + ∆t) - ƒ (t)

∆t
.

Besides telling how fast an object is moving along the horizontal line in Figure 3.15, 
its velocity tells the direction of motion. When the object is moving forward (s increasing), 
the velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity 
and downward for negative velocity. The blue curves in Figure 3.16 represent position 
along the line over time; they do not portray the path of motion, which lies along the verti-
cal s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 
on the way over but it will not show -30 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
velocity. Speed measures the rate of progress regardless of direction.
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FIGURE 3.16 For motion s = ƒ (t)
along a straight line (the vertical axis), 
y = ds>dt is (a) positive when s increases 
and (b) negative when s decreases.

DEFINITION Speed is the absolute value of velocity.

Speed = #y(t) # = `ds
dt `

EXAMPLE 2 Figure 3.17 shows the graph of the velocity y = ƒ ′(t) of a particle 
moving along a horizontal line (as opposed to showing a position function s = ƒ (t) such 
as in Figure 3.16). In the graph of the velocity function, it’s not the slope of the curve that 
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Solution The rate of change of the area with respect to the diameter is

dA
dD = p
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# 2D = pD

2 .

When D = 10 m, the area is changing with respect to the diameter at the rate of 
(p>2)10 = 5p m2>m ≈ 15.71 m2>m. 

Motion Along a Line: Displacement, Velocity, Speed, 
Acceleration, and Jerk

Suppose that an object (or body, considered as a whole mass) is moving along a coordinate 
line (an s-axis), usually horizontal or vertical, so that we know its position s on that line as 
a function of time t:

s = ƒ (t).

The displacement of the object over the time interval from t to t + ∆t (Figure 3.15) is

∆s = ƒ (t + ∆t) - ƒ (t),

and the average velocity of the object over that time interval is

yay =
displacement
travel time = ∆s

∆t
=

ƒ (t + ∆t) - ƒ (t)
∆t

.

To find the body’s velocity at the exact instant t, we take the limit of the average 
velocity over the interval from t to t + ∆t as ∆t shrinks to zero. This limit is the deriva-
tive of ƒ with respect to t.
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s =  f (t) s + Δs =  f (t + Δt)

FIGURE 3.15  The positions of a body 
moving along a coordinate line at time t 
and shortly later at time t + ∆t. Here the 
coordinate line is horizontal.

DEFINITION Velocity (instantaneous velocity) is the derivative of position 
with respect to time. If a body’s position at time t is s = ƒ (t), then the body’s 
velocity at time t is

y(t) = ds
dt = lim

∆tS0
 
ƒ (t + ∆t) - ƒ (t)

∆t
.

Besides telling how fast an object is moving along the horizontal line in Figure 3.15, 
its velocity tells the direction of motion. When the object is moving forward (s increasing), 
the velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity 
and downward for negative velocity. The blue curves in Figure 3.16 represent position 
along the line over time; they do not portray the path of motion, which lies along the verti-
cal s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 
on the way over but it will not show -30 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
velocity. Speed measures the rate of progress regardless of direction.
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EXAMPLE 2 Figure 3.17 shows the graph of the velocity y = ƒ ′(t) of a particle 
moving along a horizontal line (as opposed to showing a position function s = ƒ (t) such 
as in Figure 3.16). In the graph of the velocity function, it’s not the slope of the curve that 
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Similarly, if the object is moving backwards, the velocity is
negative.

The speed of the object is the absolute value of velocity,

speed = |v(t)| =
∣∣∣∣dsdt
∣∣∣∣ .



Speed versus velocity

If the object is moving forward, the velocity is positive.
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Besides telling how fast an object is moving along the horizontal line in Figure 3.15, 
its velocity tells the direction of motion. When the object is moving forward (s increasing), 
the velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity 
and downward for negative velocity. The blue curves in Figure 3.16 represent position 
along the line over time; they do not portray the path of motion, which lies along the verti-
cal s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 
on the way over but it will not show -30 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
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Besides telling how fast an object is moving along the horizontal line in Figure 3.15, 
its velocity tells the direction of motion. When the object is moving forward (s increasing), 
the velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity 
and downward for negative velocity. The blue curves in Figure 3.16 represent position 
along the line over time; they do not portray the path of motion, which lies along the verti-
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If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 
on the way over but it will not show -30 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
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Besides telling how fast an object is moving along the horizontal line in Figure 3.15, 
its velocity tells the direction of motion. When the object is moving forward (s increasing), 
the velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity 
and downward for negative velocity. The blue curves in Figure 3.16 represent position 
along the line over time; they do not portray the path of motion, which lies along the verti-
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If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 
on the way over but it will not show -30 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
velocity. Speed measures the rate of progress regardless of direction.
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Similarly, if the object is moving backwards, the velocity is
negative.

The speed of the object is the absolute value of velocity,

speed = |v(t)| =
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Change in velocity

Acceleration a(t) is the change in velocity over time. Namely, it
is the derivative of velocity with respect to time:

a(t) =
d

dt
v(t) =

d2

dt2
s(t).

Jerk is the change in acceleration over time, i.e. the derivative of
acceleration with respect to time:

j(t) =
d

dt
a(t) =
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dt2
v(t) =

d3

dt3
s(t).
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FIGURE 3.17 The velocity graph of a particle moving along a horizontal line,  
discussed in Example 2.

tells us if the particle is moving forward or backward along the line (which is not shown in 
the figure), but rather the sign of the velocity. Looking at Figure 3.17, we see that the 
particle moves forward for the first 3 sec (when the velocity is positive), moves backward 
for the next 2 sec (the velocity is negative), stands motionless for a full second, and then 
moves forward again. The particle is speeding up when its positive velocity increases dur-
ing the first second, moves at a steady speed during the next second, and then slows down 
as the velocity decreases to zero during the third second. It stops for an instant at t = 3 sec
(when the velocity is zero) and reverses direction as the velocity starts to become negative. 
The particle is now moving backward and gaining in speed until t = 4 sec, at which time 
it achieves its greatest speed during its backward motion. Continuing its backward motion 
at time t = 4, the particle starts to slow down again until it finally stops at time t = 5
(when the velocity is once again zero). The particle now remains motionless for one full 
second, and then moves forward again at t = 6 sec, speeding up during the final second of 
the forward motion indicated in the velocity graph. 

The rate at which a body’s velocity changes is the body’s acceleration. The accelera-
tion measures how quickly the body picks up or loses speed. In Chapter 13 we will study 
motion in the plane and in space, where acceleration of an object may also lead to a 
change in direction.

A sudden change in acceleration is called a jerk. When a ride in a car or a bus is jerky, 
it is not that the accelerations involved are necessarily large but that the changes in accel-
eration are abrupt.

HISTORICAL BIOGRAPHY
Bernard Bolzano  
(1781–1848)
www.goo.gl/fDTR2a

DEFINITIONS Acceleration is the derivative of velocity with respect to time. 
If a body’s position at time t is s = ƒ (t), then the body’s acceleration at time t is

a(t) = dy
dt = d2s

dt2 .

Jerk is the derivative of acceleration with respect to time:

j(t) = da
dt = d3s

dt3 .
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Acceleration under gravity

3.4  The Derivative as a Rate of Change 147

Near the surface of Earth all bodies fall with the same constant acceleration. Galileo’s 
experiments with free fall (see Section 2.1) lead to the equation

s = 1
2 gt2,

where s is the distance fallen and g is the acceleration due to Earth’s gravity. This equation 
holds in a vacuum, where there is no air resistance, and closely models the fall of dense, 
heavy objects, such as rocks or steel tools, for the first few seconds of their fall, before the 
effects of air resistance are significant.

The value of g in the equation s = (1>2)gt2 depends on the units used to measure t and 
s. With t in seconds (the usual unit), the value of g determined by measurement at sea level is 
approximately 32 ft>sec2 (feet per second squared) in English units, and g = 9.8 m>sec2 
(meters per second squared) in metric units. (These gravitational constants depend on the dis-
tance from Earth’s center of mass, and are slightly lower on top of Mt. Everest, for example.)

The jerk associated with the constant acceleration of gravity (g = 32 ft>sec2) is zero:

j = d
dt (g) = 0.

An object does not exhibit jerkiness during free fall.

EXAMPLE 3  Figure 3.18 shows the free fall of a heavy ball bearing released from 
rest at time t = 0 sec.

(a) How many meters does the ball fall in the first 3 sec?

(b) What is its velocity, speed, and acceleration when t = 3?

Solution

(a) The metric free-fall equation is s = 4.9t2. During the first 3 sec, the ball falls

s(3) = 4.9(3)2 = 44.1 m.

(b) At any time t, velocity is the derivative of position:

y(t) = s′(t) = d
dt (4.9t2) = 9.8t.

At t = 3, the velocity is

y(3) = 29.4 m>sec

 in the downward (increasing s) direction. The speed at t = 3 is

speed = 0 y(3) 0 = 29.4 m>sec.

The acceleration at any time t is

a(t) = y′(t) = s″(t) = 9.8 m>sec2.

At t = 3, the acceleration is 9.8 m>sec2. 

EXAMPLE 4  A dynamite blast blows a heavy rock straight up with a launch velocity 
of 160 ft > sec (about 109 mph) (Figure 3.19a). It reaches a height of s = 160t - 16t2 ft 
after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the 
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?

(d) When does the rock hit the ground again?
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FIGURE 3.18 A ball bearing falling 
from rest (Example 3).
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Near the surface of Earth all bodies fall with
the same constant acceleration:

s =
1

2
gt2, where g = 9.8m/s2.

(Frame of reference: positive is down.)

Check:

v =
d

dt
s =

d

dt

(
1

2
gt2
)

=
1

2
· g · 2t = gt.

a =
d

dt
v =

d

dt
gt = g. X

Example: We drop a ball from a very high tower. How far has it
fallen after 10 seconds? How fast is it going at that point?
Ans.

s(10) =
1

2
· g · (10)2 = 980/2 meters, v(10) = g(t) = 98m/s.
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rest at time t = 0 sec.

(a) How many meters does the ball fall in the first 3 sec?

(b) What is its velocity, speed, and acceleration when t = 3?

Solution

(a) The metric free-fall equation is s = 4.9t2. During the first 3 sec, the ball falls

s(3) = 4.9(3)2 = 44.1 m.

(b) At any time t, velocity is the derivative of position:

y(t) = s′(t) = d
dt (4.9t2) = 9.8t.

At t = 3, the velocity is

y(3) = 29.4 m>sec

 in the downward (increasing s) direction. The speed at t = 3 is

speed = 0 y(3) 0 = 29.4 m>sec.

The acceleration at any time t is

a(t) = y′(t) = s″(t) = 9.8 m>sec2.

At t = 3, the acceleration is 9.8 m>sec2. 

EXAMPLE 4  A dynamite blast blows a heavy rock straight up with a launch velocity 
of 160 ft > sec (about 109 mph) (Figure 3.19a). It reaches a height of s = 160t - 16t2 ft 
after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the 
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?

(d) When does the rock hit the ground again?
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holds in a vacuum, where there is no air resistance, and closely models the fall of dense, 
heavy objects, such as rocks or steel tools, for the first few seconds of their fall, before the 
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(b) At any time t, velocity is the derivative of position:

y(t) = s′(t) = d
dt (4.9t2) = 9.8t.

At t = 3, the velocity is

y(3) = 29.4 m>sec

 in the downward (increasing s) direction. The speed at t = 3 is

speed = 0 y(3) 0 = 29.4 m>sec.

The acceleration at any time t is

a(t) = y′(t) = s″(t) = 9.8 m>sec2.

At t = 3, the acceleration is 9.8 m>sec2. 

EXAMPLE 4  A dynamite blast blows a heavy rock straight up with a launch velocity 
of 160 ft > sec (about 109 mph) (Figure 3.19a). It reaches a height of s = 160t - 16t2 ft 
after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the 
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?

(d) When does the rock hit the ground again?
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holds in a vacuum, where there is no air resistance, and closely models the fall of dense, 
heavy objects, such as rocks or steel tools, for the first few seconds of their fall, before the 
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s. With t in seconds (the usual unit), the value of g determined by measurement at sea level is 
approximately 32 ft>sec2 (feet per second squared) in English units, and g = 9.8 m>sec2 
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tance from Earth’s center of mass, and are slightly lower on top of Mt. Everest, for example.)
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dt (g) = 0.

An object does not exhibit jerkiness during free fall.
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rest at time t = 0 sec.

(a) How many meters does the ball fall in the first 3 sec?

(b) What is its velocity, speed, and acceleration when t = 3?
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(b) At any time t, velocity is the derivative of position:

y(t) = s′(t) = d
dt (4.9t2) = 9.8t.

At t = 3, the velocity is

y(3) = 29.4 m>sec

 in the downward (increasing s) direction. The speed at t = 3 is

speed = 0 y(3) 0 = 29.4 m>sec.

The acceleration at any time t is

a(t) = y′(t) = s″(t) = 9.8 m>sec2.

At t = 3, the acceleration is 9.8 m>sec2. 

EXAMPLE 4  A dynamite blast blows a heavy rock straight up with a launch velocity 
of 160 ft > sec (about 109 mph) (Figure 3.19a). It reaches a height of s = 160t - 16t2 ft 
after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the 
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?
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2 gt2,

where s is the distance fallen and g is the acceleration due to Earth’s gravity. This equation 
holds in a vacuum, where there is no air resistance, and closely models the fall of dense, 
heavy objects, such as rocks or steel tools, for the first few seconds of their fall, before the 
effects of air resistance are significant.

The value of g in the equation s = (1>2)gt2 depends on the units used to measure t and 
s. With t in seconds (the usual unit), the value of g determined by measurement at sea level is 
approximately 32 ft>sec2 (feet per second squared) in English units, and g = 9.8 m>sec2 
(meters per second squared) in metric units. (These gravitational constants depend on the dis-
tance from Earth’s center of mass, and are slightly lower on top of Mt. Everest, for example.)

The jerk associated with the constant acceleration of gravity (g = 32 ft>sec2) is zero:

j = d
dt (g) = 0.

An object does not exhibit jerkiness during free fall.

EXAMPLE 3  Figure 3.18 shows the free fall of a heavy ball bearing released from 
rest at time t = 0 sec.

(a) How many meters does the ball fall in the first 3 sec?

(b) What is its velocity, speed, and acceleration when t = 3?
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(a) The metric free-fall equation is s = 4.9t2. During the first 3 sec, the ball falls

s(3) = 4.9(3)2 = 44.1 m.

(b) At any time t, velocity is the derivative of position:

y(t) = s′(t) = d
dt (4.9t2) = 9.8t.

At t = 3, the velocity is

y(3) = 29.4 m>sec

 in the downward (increasing s) direction. The speed at t = 3 is

speed = 0 y(3) 0 = 29.4 m>sec.

The acceleration at any time t is

a(t) = y′(t) = s″(t) = 9.8 m>sec2.

At t = 3, the acceleration is 9.8 m>sec2. 

EXAMPLE 4  A dynamite blast blows a heavy rock straight up with a launch velocity 
of 160 ft > sec (about 109 mph) (Figure 3.19a). It reaches a height of s = 160t - 16t2 ft 
after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the 
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?

(d) When does the rock hit the ground again?
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where s is the distance fallen and g is the acceleration due to Earth’s gravity. This equation 
holds in a vacuum, where there is no air resistance, and closely models the fall of dense, 
heavy objects, such as rocks or steel tools, for the first few seconds of their fall, before the 
effects of air resistance are significant.

The value of g in the equation s = (1>2)gt2 depends on the units used to measure t and 
s. With t in seconds (the usual unit), the value of g determined by measurement at sea level is 
approximately 32 ft>sec2 (feet per second squared) in English units, and g = 9.8 m>sec2 
(meters per second squared) in metric units. (These gravitational constants depend on the dis-
tance from Earth’s center of mass, and are slightly lower on top of Mt. Everest, for example.)

The jerk associated with the constant acceleration of gravity (g = 32 ft>sec2) is zero:

j = d
dt (g) = 0.

An object does not exhibit jerkiness during free fall.

EXAMPLE 3  Figure 3.18 shows the free fall of a heavy ball bearing released from 
rest at time t = 0 sec.

(a) How many meters does the ball fall in the first 3 sec?

(b) What is its velocity, speed, and acceleration when t = 3?
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(a) The metric free-fall equation is s = 4.9t2. During the first 3 sec, the ball falls

s(3) = 4.9(3)2 = 44.1 m.

(b) At any time t, velocity is the derivative of position:

y(t) = s′(t) = d
dt (4.9t2) = 9.8t.

At t = 3, the velocity is

y(3) = 29.4 m>sec

 in the downward (increasing s) direction. The speed at t = 3 is

speed = 0 y(3) 0 = 29.4 m>sec.

The acceleration at any time t is

a(t) = y′(t) = s″(t) = 9.8 m>sec2.

At t = 3, the acceleration is 9.8 m>sec2. 

EXAMPLE 4  A dynamite blast blows a heavy rock straight up with a launch velocity 
of 160 ft > sec (about 109 mph) (Figure 3.19a). It reaches a height of s = 160t - 16t2 ft 
after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the 
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?
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Near the surface of Earth all bodies fall with the same constant acceleration. Galileo’s 
experiments with free fall (see Section 2.1) lead to the equation

s = 1
2 gt2,

where s is the distance fallen and g is the acceleration due to Earth’s gravity. This equation 
holds in a vacuum, where there is no air resistance, and closely models the fall of dense, 
heavy objects, such as rocks or steel tools, for the first few seconds of their fall, before the 
effects of air resistance are significant.

The value of g in the equation s = (1>2)gt2 depends on the units used to measure t and 
s. With t in seconds (the usual unit), the value of g determined by measurement at sea level is 
approximately 32 ft>sec2 (feet per second squared) in English units, and g = 9.8 m>sec2 
(meters per second squared) in metric units. (These gravitational constants depend on the dis-
tance from Earth’s center of mass, and are slightly lower on top of Mt. Everest, for example.)

The jerk associated with the constant acceleration of gravity (g = 32 ft>sec2) is zero:

j = d
dt (g) = 0.

An object does not exhibit jerkiness during free fall.

EXAMPLE 3  Figure 3.18 shows the free fall of a heavy ball bearing released from 
rest at time t = 0 sec.

(a) How many meters does the ball fall in the first 3 sec?

(b) What is its velocity, speed, and acceleration when t = 3?
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(a) The metric free-fall equation is s = 4.9t2. During the first 3 sec, the ball falls

s(3) = 4.9(3)2 = 44.1 m.

(b) At any time t, velocity is the derivative of position:

y(t) = s′(t) = d
dt (4.9t2) = 9.8t.

At t = 3, the velocity is

y(3) = 29.4 m>sec

 in the downward (increasing s) direction. The speed at t = 3 is

speed = 0 y(3) 0 = 29.4 m>sec.

The acceleration at any time t is

a(t) = y′(t) = s″(t) = 9.8 m>sec2.

At t = 3, the acceleration is 9.8 m>sec2. 

EXAMPLE 4  A dynamite blast blows a heavy rock straight up with a launch velocity 
of 160 ft > sec (about 109 mph) (Figure 3.19a). It reaches a height of s = 160t - 16t2 ft 
after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the 
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?

(d) When does the rock hit the ground again?
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Near the surface of Earth all bodies fall with the same constant acceleration. Galileo’s 
experiments with free fall (see Section 2.1) lead to the equation

s = 1
2 gt2,

where s is the distance fallen and g is the acceleration due to Earth’s gravity. This equation 
holds in a vacuum, where there is no air resistance, and closely models the fall of dense, 
heavy objects, such as rocks or steel tools, for the first few seconds of their fall, before the 
effects of air resistance are significant.

The value of g in the equation s = (1>2)gt2 depends on the units used to measure t and 
s. With t in seconds (the usual unit), the value of g determined by measurement at sea level is 
approximately 32 ft>sec2 (feet per second squared) in English units, and g = 9.8 m>sec2 
(meters per second squared) in metric units. (These gravitational constants depend on the dis-
tance from Earth’s center of mass, and are slightly lower on top of Mt. Everest, for example.)

The jerk associated with the constant acceleration of gravity (g = 32 ft>sec2) is zero:

j = d
dt (g) = 0.

An object does not exhibit jerkiness during free fall.

EXAMPLE 3  Figure 3.18 shows the free fall of a heavy ball bearing released from 
rest at time t = 0 sec.

(a) How many meters does the ball fall in the first 3 sec?

(b) What is its velocity, speed, and acceleration when t = 3?

Solution

(a) The metric free-fall equation is s = 4.9t2. During the first 3 sec, the ball falls

s(3) = 4.9(3)2 = 44.1 m.

(b) At any time t, velocity is the derivative of position:

y(t) = s′(t) = d
dt (4.9t2) = 9.8t.

At t = 3, the velocity is

y(3) = 29.4 m>sec

 in the downward (increasing s) direction. The speed at t = 3 is

speed = 0 y(3) 0 = 29.4 m>sec.

The acceleration at any time t is

a(t) = y′(t) = s″(t) = 9.8 m>sec2.

At t = 3, the acceleration is 9.8 m>sec2. 

EXAMPLE 4  A dynamite blast blows a heavy rock straight up with a launch velocity 
of 160 ft > sec (about 109 mph) (Figure 3.19a). It reaches a height of s = 160t - 16t2 ft 
after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the 
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?
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(a) The metric free-fall equation is s = 4.9t2. During the first 3 sec, the ball falls

s(3) = 4.9(3)2 = 44.1 m.

(b) At any time t, velocity is the derivative of position:

y(t) = s′(t) = d
dt (4.9t2) = 9.8t.

At t = 3, the velocity is

y(3) = 29.4 m>sec

 in the downward (increasing s) direction. The speed at t = 3 is

speed = 0 y(3) 0 = 29.4 m>sec.

The acceleration at any time t is

a(t) = y′(t) = s″(t) = 9.8 m>sec2.

At t = 3, the acceleration is 9.8 m>sec2. 

EXAMPLE 4  A dynamite blast blows a heavy rock straight up with a launch velocity 
of 160 ft > sec (about 109 mph) (Figure 3.19a). It reaches a height of s = 160t - 16t2 ft 
after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the 
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?
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FIGURE 3.18 A ball bearing falling 
from rest (Example 3).
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Near the surface of Earth all bodies fall with
the same constant acceleration:

s =
1

2
gt2, where g = 9.8m/s2.

(Frame of reference: positive is down.)

Check:

v =
d

dt
s =

d

dt

(
1

2
gt2
)

=
1

2
· g · 2t = gt.

a =
d

dt
v =

d

dt
gt = g. X

Example: We drop a ball from a very high tower. How far has it
fallen after 10 seconds? How fast is it going at that point?
Ans.

s(10) =
1

2
· g · (10)2 = 980/2 meters, v(10) = g(t) = 98m/s.



Acceleration under gravity

Near the surface of Earth, the vertical trajectory of a body is given
by

s(t) =
1

2
gt2 + v0t+ s0,

where
g = −9.8m/s2,

v0 = initial velocity (m/s), and

s0 = initial position (m).

(Frame of reference: positive is up.)

Example. A cannonball is shot up in the air from 1 meter above
the ground at an initial velocity of 400 m/s.
(1) What is the maximum height that the ball reaches?

This happens when v = 0.

(2) When does the ball hit the ground?

This happens when s = 0.

Use s(t) = 1
2(−9.8)t2 + 400t+ 1 .
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Rates of change in economics

Let’s consider the cost of production c(x) as a function of x, the
number of units produced. (The first thing is expensive to make;
manufacturing in bulk can be more efficient.)

If you’re already
producing x things, the average cost of producing h more units is

c(x+ h)− c(x)

h
=

extra cost of producing h more things

number of extra things
.

Then the marginal cost of production is

marginal cost = lim
h→0

c(x+ h)− c(x)

h
=

d

dx
c(x).

(Sometimes, h isn’t relatively small compared to x, in which case
we can only really look as small as h = 1.)

Read examples 5 and 6 in the book.

See also “sensitivity to change”, e.g. with genetic data.
(Example 7)
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Review

I Functions, basic graphs, graph transformations

I Domains and ranges

I Trig functions and identities, inverse trig functions

I Exponential functions, logarithms, and identities
I Limits

I one- and two-sided
I when are they defined
I computing them

I Asymptotes

I Continuity

I Average rate of change
I Limit definition of derivatives

I polynomials, roots, reciprocals

I Basic derivative rules
I powers, scalars, sums, products, compositions



Functions, basic graphs, graph transformations

Know basic graphs of

mx+ b, x2, x3, x4.

1/x, 1/x2,
√
x, 3

√
x.

If you know the graph of y = f(x), also know the graphs of

f(x+ c), f(cx), cf(x), f(x) + c, 1/f(x).

Also know how graph transformations affect domain and range.



Trig functions and identities, inverse trig functions

I Graphs of sin(x) and cos(x)

I How to use the unit circle

I Special values

I Angle addition formulas

I How to compute tan(x), csc(x), sec(x), cot(x) and their
graphs



Exponential functions, logarithms, and identities

I Graphs of ax for a > 0 and for a < 0

I What is e?

I Identities like ax+y = axay, etc.

I Graphs of loga(x). What is ln(x)?

I Identities like ln(xy) = ln(x) + ln(y).

I Exponential growth.



Limits and continuity

I One sided limits, from the left or right

I Two-sided limits

I Limits at ±∞
I Infinite limits

I Computing standard limits

I Graph asymptotes (vertical, horizontal, skew).

I Definition of continuous, and how to compute where functions
are discontinuous.
(Difference between the limit existing and a function being
continuous.)



Rates of change

I Average rate of change

f(x+ h)− f(x)

h
I Limit definition of derivative

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

I Computing derivatives of functions like
mx+ b, x2, x3,

√
x, 1/x, 1/x2 using the limit definition.

I Basic derivative rules: powers, scalars, sums, products,
compositions


