Warmup: Use the limit definition of the derivative to calculate the
following derivatives.

1. L5z +2) 4. L[(52+2)(3z—1)]
2. L3z -1) 5. L1522
3. L5z +2)+ 3z —1)] 6. L(152% + 2 —2)

Remember the power rule says d%x“ =ax® L.
Based on your calculations above, which of the following statements
seem to be true and which seem to be false?

(a) If you multiply a function f(z) by a number ¢ and then take a
derivative, you get the same thing as taking the derivative f’(z) and
then mu|t|p|y|ng by C. (try comparing 5 to the power rule)

(b) If you add two functions f(x) and g(x) and take a derivative, you
get the same answer as taking the derivatives f'(z) and ¢’(z) and
then addlng those together. (try comparing 1-3, and then 6 to the power rule)

(c) If you multiply two functions f(x) and g(x) and take a derivative,
you get the same answer as taking the derivatives f/(z) and ¢'(z)
and then multlplylng those together. (try comparing 1, 2, and 4)



Warmup: Use the limit definition of the derivative to calculate the
following derivatives.

1 L(x4+2) =5 4. L1(52+2)(3z—1)]= 30z + 1

i
2. L3z -1) =3 5. 41522 =30z
3. Gz +2)+ B —1)] =8 6. Z(152° +a—2) =30z +1
Remember the power rule says d%x“ =ax® L.

Based on your calculations above, which of the following statements
seem to be true and which seem to be false?

(a) If you multiply a function f(z) by a number ¢ and then take a
derivative, you get the same thing as taking the derivative f’(z) and
then mu|t|p|y|ng by C. (try comparing 5 to the power rule) true?

(b) If you add two functions f(x) and g(x) and take a derivative, you
get the same answer as taking the derivatives f'(z) and ¢’(z) and
then adding those together. (try comparing 1-3, and then 6 to the power rule)  true?

(c) If you multiply two functions f(x) and g(x) and take a derivative,
you get the same answer as taking the derivatives f/(z) and ¢'(z)
and then multiplying those together. (try comparing 1, 2, and 4) false!



Multiplying by constants: what's going on?

Take another look at f(z) = 152%. Before, we just expanded and
canceled, and were surprised to find something nice happened:
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Multiplying by constants: what's going on?

Take another look at f(z) = 152%. Before, we just expanded and
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Let's try again, only pay closer attention to that 15:
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But now suppose you have any differentiable function f(z) and a
number c. [Think: f(z) = 2% and ¢ = 15].
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But now suppose you have any differentiable function f(z) and a
number c. [Think: f(z) = 2% and ¢ = 15]. Then in general
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Multiplying by constants

Theorem (Scalars)
If y = f(x) is a differentiable function and c is a constant, then

d d
e f@) = T f@).



Multiplying by constants

Theorem (Scalars)
If y = f(x) is a differentiable function and c is a constant, then

d d
e f@) = T f@).

Example

Since L22 = 22, we have L1522 = 15 - (2z) = 30z.



Taking sums: what's going on?
Take another look at f(z) = (52 + 2) + (3z — 1). Before, we just

simplified first, and were surprised:
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Taking sums: what's going on?

Take another look at f(z) = (52 + 2) + (3z — 1). Before, we just
simplified first, and were surprised:
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Taking sums: what's going on?
Take another look at f(z) = (52 + 2) + (3z — 1). Before, we just
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Taking sums: what's going on?
Take another look at f(z) = (52 + 2) + (3z — 1). Before, we just
simpIified first, and were surprised:
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Taking sums: what's going on?
Take another look at f(x)

= (bx +2) + (3z — 1). Before, we just
simpIified first, and were surprised'
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Now, suppose you have any differentiable functions f(z) and g(z)
[Think: f(z) =52+ 2 and g(x) = 3z — 1].



Now, suppose you have any differentiable functions f(z) and g(z)
[Think: f(z) =5z + 2 and g(z) = 3z — 1]. Then in general
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Now, suppose you have any differentiable functions f(z) and g(z)
[Think: f(z) =5z + 2 and g(z) = 3z — 1]. Then in general
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Now, suppose you have any differentiable functions f(z) and g(z)
[Think: f(z) =5z + 2 and g(z) = 3z — 1]. Then in general
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Now, suppose you have any differentiable functions f(z) and g(z)
[Think: f(z) =5z + 2 and g(z) = 3z — 1]. Then in general
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Now, suppose you have any differentiable functions f(z) and g(z)
[Think: f(z) =5z + 2 and g(z) = 3z — 1]. Then in general
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Theorem (Sums)
If f and g are differentiable functions, then

d

2 (@) + (@) = f'(2) + ¢'()




Example

Use the three rules we have so far

d a a—1 d

dormart, Lo gy =e (Lrw),

and L (7(2) + 9(a)) = - (&) + g(a)

to calculate the derivatives:
1. 4 (23— 722+ 6271)

2 4 (Ve +100 Vi - )

[hint: rewrite everything from 2 as powers before you do anything]



Example

Use the three rules we have so far

d
and  —(f(z) + g(x)) = ——f(z) + ——g()
to calculate the derivatives:
1. %(mg' — 72 + 62719)

= %mg—?-%wz—&—()‘-ﬁw*l‘r’ =322 -7 (22) +6(—1

) .—16
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— 1/2+100 3/17 3. di I—19
= %.il/? -+ 100 - (ﬁ) g7 — 3. (—19)2= %0

[hint: rewrite everything from 2 as powers before you do a
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nything]




Products: What's going on?

Take another look at f(z) = (5z +2) - (3z — 1). Before, we just
simplified first, and were. .. not surprised:
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We didn’t get that the derivative of the products is the product of
the derivatives! So what is going on here?



To understand how to deal with products, we're going to have to
unpack the formula

L ba) - a(e) = tim LEEN 9@+ 1) = (@) g(2)

% h—0 h




To understand how to deal with products, we're going to have to
unpack the formula

d (F(z) - g(z)) = lim fx+h) -glx+h)— f(z)-g(x)

% h—0 h




To understand how to deal with products, we're going to have to
unpack the formula
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d o fleth) gzt h) — f(2) gle)
—(f@)-g(a)) = lim -
S(x+WnD
— $ex> 5
/
é’ %m ?
w Z
7> 7 2.
alicp % (x+hn)
§ (kW) % g ey = TGO * gl = —_—| ™
emseen-fenahs B - B

(e = q (x
CAME AL YR VAN



To understand how to deal with products, we're going to have to
unpack the formula

d o fleth) gzt h) — f(2) gle)
—(f@)-g(a)) = lim -
S(x+WnD
— $ex> 5
/
é’ %m ?
ro -
7> 7 2.
alicp % (x+hn)
§ (kW) % g ey = TGO * gl = —_—| ™
emseen-fenahs B - B

(%*W) = 9 (x
T =Ty

= Feow(aben-a6d)
“ %(x-\-\n\“( Flxewd - F (x\\\



SICTALD)

— $exd =

£ e

; %(!3 é

= 7

«© Z

2
S //Z -
§ (k) % g (Y= SN * a6 = - | gxm

goed-somsd By« (2

L A TN 7N

= f (O™ (cé(x*\r\‘, = g(x\\
-+ %(x-\-\a\“( F (xS =% (x\\



S(nend

— $Cxd ez

< 7

; %(!3 é

< ?

72 2
S //Z )
S (X % G (v = SO * a6 = - | glxn

3 - Kl =

L R 1NN N

o ’?(x)*(%(x«-k‘,-g(x\\
+ U F e ~F06eN)
So
%{ Teoxged = A Qaw\ FOen) x glxen - FON 6N
lg¥

=&, (300w [geem- go) + g lFoeny-364))




So
;—‘- O 30‘3 =

Qim FOm) x gl = $060 YD
lg¥

n-0

= Lim L
N6 N ( FOO# {%Cx-»\\) 36‘“ + g(xa.-»\}[%m,\\ ‘YCxﬂ}



So
?(x\% 30‘3 =

n-0

Qim Flxaw) x glxen = F060 YD
u

= L
na0 WM ( $00 w [goemd- 303\ 4 gleem) [Ty - -ch\fw
: \8\‘\:0‘_9‘&3 *<3(";"‘:_1_&"\> * %(xw\)n Q(**“ ‘;0‘3)]
\n



So
;‘-— Feorq00 = Bien §Cxrwn) % 8("*::) = TGN BN

n-0

- ,\Q{,‘\X\O w ( NN E%Cx-»\\) 36(51 e g(mh}\‘_-%&\fﬁ ‘YCxﬂ}
= 3\‘\:0‘-; (% -)'\< (____x*h\ S(_x\> e %(K-\-‘f\)% Q\(’“M —__;06)]
W

£ e B A0 g0 gy
\f\,

‘>0

Cim . Lim F Gema)y =S¢
( 4t h\) <W s T

g (% %i’(xB



So
;‘-— F6% 400 = Bim Flxan) ® gl = FON 36N
U

n-0

= Lim L
N6 N ( FOO# {%Cx-»\\) 3661 + g(xa.-h}\‘_&‘oﬁ\,ﬁ §Cxﬂ>
= 3\‘:0‘_“- (%) -x< Mx\> 5 %(,(.\.\,\3,,, Q(x-ﬂn -%qﬂ
W,

£ e B A0 g0 gy
\f\,

‘>0

Cim . Lim Fewa)y=F

< %Cx h\> <\n—=>o _'%L__ﬁx\>
3 (¢ %i"(xB |

= YO % g/ (X + gl x £



Theorem (Products)
If f(z) and g(x) are differentiable functions, then

d

(@) -g(2)) = f(2) - ¢'(z) + g(z) - f'().



Theorem (Products)
If f(z) and g(x) are differentiable functions, then

d

(@) -9(2)) = f(z) - ¢'(z) + g(2) - f'(x).

Example: Calculate -4 ((52 + 2)(3z — 1)):

%((5$+2)(3x—1)):(530—1-2)-3—1—(3:1:—1)-5:@

1 g’ fd+ g9 -Ff



Last rule: Compositions.
Example: Calculate - (52 + 2)100.



Last rule: Compositions.

Example: Calculate %(53& +2)
If f(x) =2' and g(x) = 52 + 2, then f(g(x)) = (5x + 2)1%.

100



Last rule: Compositions.
Example: Calculate %(53& +2)
If f(x) =2' and g(x) = 52 + 2, then f(g(x)) = (5x + 2)1%.
So since f/(x) = 1002% and ¢'(x) = 5, if everything were easy in
the world, we might hope that

d
S5+ 2)190 = 100(5)%

100



Last rule: Compositions.
Example: Calculate %(53& +2)
If f(x) =2' and g(x) = 52 + 2, then f(g(x)) = (5x + 2)1%.
So since f/(x) = 1002% and ¢'(x) = 5, if everything were easy in
the world, we might hope that

100

d (
S-(br + 2)100 = 100(5)%
L

But it's not!! 4 (52 +2)90 2£ 100(5)%




Last rule: Compositions.
Example: Calculate %(53& +2)
If f(x) =2' and g(x) = 52 + 2, then f(g(x)) = (5x + 2)1%.
So since f/(x) = 1002% and ¢'(x) = 5, if everything were easy in
the world, we might hope that

100

d
S-(br + 2)100 = 100(5)%
T

But it's not!! 4 (52 +2)90 2£ 100(5)%

Theorem (Chain rule)
If f(x) and g(x) are differentiable functions, then

L((Fon)@) = (7o) = F'(a(a)) - ()



Last rule: Compositions.
Theorem (Chain rule)

If f(x) and g(x) are differentiable functions, then

(0 9)(@) = - (Fla(e)) = Flgla)) - o' (2).



Last rule: Compositions.

Theorem (Chain rule)
If f(x) and g(x) are differentiable functions, then

(0 9)(@) = - (Fla(e)) = Flgla)) - o' (2).

Why:



Last rule: Compositions.

Theorem (Chain rule)
If f(x) and g(x) are differentiable functions, then
d d
L((Foa)@) = (o)) = () o' (a)

Why:

2 5(q00) - L, Hakend) ~F(30d)




Last rule: Compositions.

Theorem (Chain rule)
If f(x) and g(x) are differentiable functions, then
d d
L((Foa)@) = (o)) = () o' (a)

Why:

2 5(q00) - L, Hakend) ~F(30d)
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Last rule: Compositions.

Theorem (Chain rule)
If f(x) and g(x) are differentiable functions, then
d d
L((Foa)@) = (o)) = () o' (a)

Why:
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Last rule: Compositions.

Why:

£5(309) - £, Hae) B e)
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Chain rule: i

Example
Calculate % (5 4 2)1°°.



Chain rule: %(f(g(ft)))

Example

Calculate % (5z + 2)100-

Here,
f(_w) = ,7,'100 and

g(z) = 5z + 2.



Chain rule: %(f(g(ﬁ))) = f'(9(x)) - ¢'(x).

Example
Calculate % (5 4 2)1°°.

Here,
f(z) =21 and g(z) =5z +2.

So
f'(x) =1002” and ¢'(z)=5



Chain rule: %(f(g(it))) = f'(9(x)) - ¢'(x).

Example
Calculate % (5 4 2)1°°.

Here,
f(z) =21 and g(z) =5z +2.
So
f'(x) =1002” and ¢'(z)=5
and so

d
o (50 + 210 = 100(52 + 2)% - 5.



Chain rule: di(f(g(w))) = f'(9(x)) - ¢'().

i

Example
Calculate % ( x’ + 5).



Chain rule: di(f(g(w))) = f'(9(x)) - ¢'().

x
Example
Calculate % ( x’ + 5).

Here,
fl@)=vz=2"? and g(z) =27 +5.



Chain rule: di(f(g(w))) = f'(9(x)) - ¢'().

i

Example
Calculate % ( x’ + 5).

Here,

So



Chain rule: di(f(g(w))) = f'(9(x)) - ¢'().

i

Example
Calculate % ( x’ + 5).

Here,
fla)=vr=2a"? and g(z) =2 +5.
So 1 1
/ _ 122 / — 7,0
f(x) 5% NG and  ¢'(z) =Tz
and so
T )=
dx 2/xrT+5



Derivative rules

In summary, the derivative rules we have now are

1. Power rule: -x% = ax®”
2. Scalar rule: di(c- f(x)=c- %f(x)
3. Sum rule: & (f(x) +g(x) = L f(x) + fgl)

4. Product rule: d%(f(x) cg(x)) = f(a:)%g(:c) + g(x)%f(w)



Examples
Use everything you know to calculate the derivatives of

e

(3z? +x +1)(5bx + 1) 5 2 —
(322 + .+ 1)(5z +1)? R

(52 + 1)1 1

(322 + .+ 1)(5z + 1)1° o a2 4 1212

Use the derivative rules (not limits) to prove the identities

a.

b.

C.

Reciprocal identity: d f(la:) = _;;((‘?)
Quotient identity: - (( ; f,(fﬁ)g(w;?g;( z) f(z)

I\(/;any products identity:
—(f(@) * g(a) % h(x) * k(x))
= (f@g@h(@)) <K (@) + (f@)g@)k(@)) « I ()

+(f@)h(@)k()



