Warmup - quick expansions

Pascal's triangle:
To build Pascal's triangle:

- Start with 1's on the end.
- Add two numbers above to get a new entry.

For example, the circled (3)
is the sum of the 1 and 2 above.

(A) Fill in the missing numbers.

Check: your answers should be symmetric (palindromic).

Pascal's triangle is useful for us because its makes expanding things like $(a+b)^{n}$ quickly-it gets its coefficients from the $n^{\text {th }}$ row (where you start counting from 0). For example:

$$
\begin{aligned}
& (a+b)^{0}=1 \\
& (a+b)^{1}=1 * a+1 * b \\
& (a+b)^{2}=1 * a^{2}+2 * a b+1 * b^{2} \\
& (a+b)^{3}=1 * a^{3}+3 * a^{2} b+3 * a b^{2}+1 * b^{3} \\
& (a+b)^{4}=1 * a^{4}+4 * a^{3} b+6 * a^{2} b^{2}+4 * a b^{3}+1 * b^{4} \\
& (a+b)^{5}=1 * a^{5}+5 * a^{4} b+10 * a^{3} b^{2}+10 * a^{2} b^{3}+5 * a b^{4}+1 * b^{5}
\end{aligned}
$$

(B) Fill in the last expansion. Be organized-start with a^{5}, and lower the a exponent and raise the b exponent each by 1 for each subsequent term. Read the coefficients off the the 5 th row you computed above.

Now we can use this to do other kinds of expansions quickly too. For example,

$$
\begin{aligned}
(h+2)^{3} & =1 * h^{3}+3 * h^{2} * 2+3 * h * 2^{2}+1 * 2^{3} \\
& =h^{3}+6 h^{2}+12 h+8 \\
(h-3)^{4} & =1 * h^{4}+4 * h^{3}(-3)+6 * h^{2}(-3)^{2}+4 * h(-3)^{3}+1 *(-3)^{4} \\
& =h^{4}-12 h^{3}+54 h^{2}-108 h+81 \\
(3 h-7)^{2} & =1 *(3 h)^{2}+2 *(3 h) *(-7)+1 *(-7)^{2} \\
& =9 h^{2}-42 h+49
\end{aligned}
$$

(C) Now you try:

$(h-1)^{5}=h^{5}-5 h^{4}+10 h^{3}-10 h^{2}+5 h-1$
$(h+2)^{4}=h^{4}+4 * 2 * h^{3}+6 * 2^{2} * h^{2}+4 * 2^{3} * h+2^{4}=h^{4}+8 h^{3}+24 h^{2}+32 h+16$
$(2 h-1)^{3}=(2 h)^{3}+3 *(2 h)^{2} *(-1)+3 *(2 h) *(-1)^{2}+(-1)^{3}=8 h^{3}-12 h^{2}+6 h-1$

