Today: Tangent Lines and the Derivative at a Point

Warmup:

1. Let $f(x)=x^{2}$. Compute the following limits.
(a) $\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
(b) $\lim _{h \rightarrow 0} \frac{f(-2+h)-f(-2)}{h}$
2. Let $g(x)=\frac{1}{x}$. Compute the following limits.
(a) $\lim _{h \rightarrow 0} \frac{g(3+h)-g(3)}{h}$
(b) $\lim _{h \rightarrow 0} \frac{g(-5+h)-g(-5)}{h}$

Recall: Average velocity

The average velocity from $t=t_{1}$ to $t=t_{2}$ is

$$
\text { avg velocity }=\frac{\text { change in distance }}{\text { change in time }}
$$

Recall: Average velocity

The average velocity from $t=t_{1}$ to $t=t_{2}$ is

$$
\begin{aligned}
\text { avg velocity } & =\frac{\text { change in distance }}{\text { change in time }} \\
& =\text { slope of secant line }
\end{aligned}
$$

Recall: Average velocity

The average velocity from $t=t_{1}$ to $t=t_{2}$ is

$$
\begin{aligned}
\text { avg velocity } & =\frac{\text { change in distance }}{\text { change in time }} \\
& =\text { slope of secant line }
\end{aligned}
$$

Recall: Average velocity

The average velocity from $t=t_{1}$ to $t=t_{2}$ is

$$
\begin{aligned}
\text { avg velocity } & =\frac{\text { change in distance }}{\text { change in time }} \\
& =\text { slope of secant line }
\end{aligned}
$$

Recall: Average velocity

Recall: Average velocity

The average velocity from $t=t_{1}$ to $t=t_{2}$ is

$$
\begin{aligned}
\text { avg velocity } & =\frac{\text { change in distance }}{\text { change in time }} \\
& =\text { slope of secant line }
\end{aligned}
$$

Plot position f versus time t :

$$
y=f(t)
$$

Plot position f versus time t :

Pick two points on the curve $(a, f(a))$ and $(b, f(b))$.

Plot position f versus time t :

Pick two points on the curve $(a, f(a))$ and $(b, f(b))$. Rewrite $b=a+h$.

Plot position f versus time t :

$$
y=f(t)
$$

Pick two points on the curve $(a, f(a))$ and $(b, f(b))$. Rewrite $b=a+h$. Slope of the line connecting them:

$$
\text { avg velocity }=m=\frac{f(a+h)-f(a)}{h} \quad \text { "difference quotient" }
$$

Plot position f versus time t :

$$
y=f(t)
$$

Pick two points on the curve $(a, f(a))$ and $(b, f(b))$. Rewrite $b=a+h$. Slope of the line connecting them:

$$
\text { avg velocity }=m=\frac{f(a+h)-f(a)}{h} \quad \text { "difference quotient" }
$$

Plot position f versus time t :

$$
y=f(t)
$$

Pick two points on the curve $(a, f(a))$ and $(b, f(b))$. Rewrite $b=a+h$. Slope of the line connecting them:

$$
\text { avg velocity }=m=\frac{f(a+h)-f(a)}{h} \quad \text { "difference quotient" }
$$

Plot position f versus time t :

$$
y=f(t)
$$

Pick two points on the curve $(a, f(a))$ and $(b, f(b))$. Rewrite $b=a+h$. Slope of the line connecting them:

$$
\text { avg velocity }=m=\frac{f(a+h)-f(a)}{h}
$$

The smaller h is, the more useful m is!

The difference quotient (average velocity) of the curve $y=f(x)$ at $x=a$ is

$$
\text { avg velocity }=\frac{f(a+h)-f(a)}{h} .
$$

The difference quotient (average velocity) of the curve $y=f(x)$ at $x=a$ is

$$
\text { avg velocity }=\frac{f(a+h)-f(a)}{h} .
$$

The slope (instantaneous velocity) of the curve $y=f(x)$ at the point $(a, f(a))$, called the derivative of $f(x)$ at $x=a$, is the number

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

(provided the limit exists).

The difference quotient (average velocity) of the curve $y=f(x)$ at $x=a$ is

$$
\text { avg velocity }=\frac{f(a+h)-f(a)}{h} .
$$

The slope (instantaneous velocity) of the curve $y=f(x)$ at the point $(a, f(a))$, called the derivative of $f(x)$ at $x=a$, is the number

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

(provided the limit exists).
The tangent line ℓ to the curve at $(a, f(a))$ is the line through ($a, f(a)$) with this slope:

$$
\ell: y-f(a)=m(x-a), \quad \text { where } m=f^{\prime}(a)
$$

(Recall point-slope form: $y-y_{0}=m\left(x-x_{0}\right)$.)

The slope (instantaneous velocity) of the curve $y=f(x)$ at the point $(a, f(a))$, called the derivative of $f(x)$ at $x=a$, is the number

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

(provided the limit exists).

Recall the warmup:

1. Let $f(x)=x^{2}$. Compute the following limits.
(a) $\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=2 \leftarrow$ slope at $x=1$
(b) $\lim _{h \rightarrow 0} \frac{f(-2+h)-f(-2)}{h}=-4 \leftarrow$ slope at $x=2$

blue line: $\quad y-1=2(x-1)$ red line: $\quad y-4=-4(x+2)$

The slope (instantaneous velocity) of the curve $y=f(x)$ at the point $(a, f(a))$, called the derivative of $f(x)$ at $x=a$, is the number

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

(provided the limit exists).

Recall the warmup:

2. Let $g(x)=\frac{1}{x}$. Compute the following limits.
(a) $\lim _{h \rightarrow 0} \frac{g(3+h)-g(3)}{h}=-1 / 9 \leftarrow$ slope at $x=3$
(b) $\lim _{h \rightarrow 0} \frac{g(-5+h)-g(-5)}{h}=-1 / 25 \leftarrow$ slope at $x=-5$

blue line: $y-\frac{1}{3}=-\frac{1}{9}(x-3) \quad$ red line: $y+\frac{1}{5}=-\frac{1}{25}(x+5)$

You try:

For each of the following examples...
(a) Compute $f^{\prime}(a)$ using the formula

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

(b) Compute the equation for the tangent line to ($a, f(a)$) using point-slope form.
(c) Sketch $y=f(x)$ near $x=a$ and the line you computed in part (b) on the same set of axes to check that your answers make sense.

1. $f(x)=x^{3}$ at $a=0, a=1$, and $a=-2$.
2. $f(x)=\sqrt{x}$ at $a=1$ and $a=4$.
3. $f(x)=\sin (x)$ at $a=0, a=\pi / 4$ and $a=-\pi / 2$.
[For 3, recall $\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)$ and $\lim _{\theta \rightarrow 0} \sin (\theta) / \theta=1$.]

When can we take derivatives?

Not all functions have derivatives at all places. Before calculating $f^{\prime}(a)$, first ask...
(1) Is $f(x)$ defined at $x=a$?

For example, even if it looks like you could draw a tangent line, if there's a hole, $f^{\prime}(a)$ does not exist

(It's tempting to say $f^{\prime}(a)$ exists here in part because $f(x)$ has a continuous extension at a.)

When can we take derivatives?

Not all functions have derivatives at all places. Before calculating $f^{\prime}(a)$, first ask...
(2) Is $f(x)$ continuous at $x=a$?

For example, even if it looks like you could draw a tangent line, if there's a jump, $f^{\prime}(a)$ does not exist!

(Try drawing just one line that is tangent to that isolated point. It's tempting to say $f^{\prime}(a)$ exists here in part because $f(x)$ has a removable discontinuity at a.)

When can we take derivatives?

Not all functions have derivatives at all places. Before calculating $f^{\prime}(a)$, first ask...
(2) Is $f(x)$ continuous at $x=a$?

Again, even if the slope looks the same from the left and from the right, if there's a discontinuity, $f^{\prime}(a)$ does not exist!

When can we take derivatives?

Not all functions have derivatives at all places. Before calculating $f^{\prime}(a)$, first ask...
(3) Is there a "corner" at $x=a$?

Next we'll explore how to find these algebraically, but if there's a sharp corner at $x=a$, then $f^{\prime}(a)$ does not exist!

(Try drawing just one line that is tangent to that corner)

What's wrong with corners?

You try:

$$
\text { Let } f(x)= \begin{cases}x^{2} & x<2 \\ x+2 & x \geq 2\end{cases}
$$

(a) Verify that $f(x)$ is continuous at $x=2$.
(Compute $\lim _{x \rightarrow 2^{-}} f(x), \lim _{x \rightarrow 2^{+}} f(x)$, and $f(2)$, and compare.)
(b) Sketch a graph of $f(x)$.
(c) Estimate (ok to use a calculator), and then calculate the right sided derivative.
(d) Estimate (ok to use a calculator), and then calculate the left sided derivative.
(e) Compare your answers to (c) and (d), and explain why $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$ does not exist.
Explain why $f^{\prime}(2)$ does not exist.

Estimate the right-sided derivative:

$$
f(2)=\square
$$

h	$f(2+h)$	$f(2+h)-f(2)$	$\frac{f(2+h)-f(2)}{h}$
1			
$1 / 2$			
$1 / 10$			

Compute the right-sided derivative:
$\lim _{h \rightarrow 0^{+}} \frac{f(2+h)-f(2)}{h}=$
Estimate the left-sided derivative:

$$
f(2)=\square
$$

h	$f(2+h)$	$f(2+h)-f(2)$	$\frac{f(2+h)-f(2)}{h}$
-1			
$-1 / 2$			
$-1 / 10$			

Compute the right-sided derivative:
$\lim _{h \rightarrow 0^{-}} \frac{f(2+h)-f(2)}{h}=$

