
Recall: Continuity

Let a be an interior point or an endpoint of D.
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Ex. f(x) is discontinuous

at x = 4 and 5.

No other points are fair game!

Let a be an interior point or an endpoint of D.
A function f is continuous at a if limx→a f(x) = f(a).
Checklist:

1. Does (a) lim
x→a−

f(x) exist? (b) lim
x→a+

f(x) exist?

2. Does lim
x→a

f(x) exist? (i.e. does (a) = (b)?)

3. Does f(a) = lim
x→a

f(x)?

If the answer to any of 1.–3. is “no”, then f(x) is discontinuous at
a.



Right Continuity and Left Continuity

Definition
A function f(x) is right continuous at a point a if it is defined on
an interval [a, b) and limx→a+ f(x) = f(a).
Similarly, a function f(x) is left continuous at a point a if it is
defined on an interval (b, a] and limx→a− f(x) = f(a).

Example:
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f(x) is

(a) continuous at every interior point in D except x = 4 and 5;

(b) only right continuous at those points included in (a); and

(c) additionally left continuous at x = 4 and x = 7.



Suppose a function f has no isolated points in its domain.

Definition
A function f is continuous over its domain D if (1) is is continuous at
every interior point of D, and (2) it is left (or right) continuous at every
endpoint of D. Otherwise, it has a discontinuity at each point in D
which violates (1) or (2).

Is a an interior 
point of D?

Is a an 
endpoint of D?

Does the limit exist from the 
right of a? from the left of a?

Are they equal?

Is the two-sided 
limit equal to f(a)?

f(x) is continuous 
at x=a

f(x) is discontinuous 
at x=a

Is a in the 
domain D?

Is f(x) left (or right) continuous 
(as appropriate)?

no

no

no

no

no

yes

yes

yes

yes

yes

yes

yespick again

Pick a 
number a

no



Filling and Fixing
Suppose a is a point of discontinuity in D

(a) If a is an interior point and limx→a f(x) = L exists; or

(b) if a is an endpoint and limx→a± f(x) = L exists,

then we say f(x) has a removable discontinuity:

f̄(x) =

{
f(x) x 6= a

L x = a
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Example: f(x) has a removable discontinuity in exactly one place:

f̄(x) =

{
f(x) x 6= 5

1/2 x = 5
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Filling and Fixing
Suppose a is a hole in D (a is arbitrarily close to points in D, but not in D).

(a) If a would be an interior point and limx→a f(x) = L exists; or

(b) if a would be an endpoint and limx→a± f(x) = L exists,

then we say f(x) has a continuous extension:

f̄(x) =

{
f(x) x 6= a

L x = a
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Example: f(x) has continuous extensions in exactly two places:

f̄1(x) =

{
f(x) x 6= 1

−1 x = 1
and f̄2(x) =

{
f(x) x 6= 2

1 x = 2
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Examples

(A) Which of the following have removable discontinuities? For
those which do, what are the alternate functions with those
discontinuities removed?

(B) Which of the following have continuous extensions? For those
which do, what are those extensions?

1. f(x) =
x2 − 4

x− 2

Cont. extension: f̄(x) =

{
f(x) x 6= 2

4 x = 2

2. f(x) =

{
sinx x 6= π/3

0 x = π/3

Removable disc.: f̄(x) = sin(x)

3. f(x) =
|x|
x

No continuous extension.
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One application: The Intermediate Value Theorem
Suppose f is continuous on a closed interval [a, b].

If f(a) < C < f(b) or f(a) > C > f(b),

then there is at least one point c in the interval [a, b] such that

f(c) = C.

a b

C

c a b

C

a b

C

Example 1: Show that the equation x5 − 3x+ 1 = 0 has at least
one solution in the interval [0, 1].
Example 2: Show every polynomial

p(x) = anx
n + · · ·+ a1x+ a0, an 6= 0

of odd degree has at least one real root (a solution to p(x) = 0).
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Our favorite application: Rates of change!

It only makes sense to study the rate of change of a function where
that function is continuous (or maybe where the function has a
continuous extension)!
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2.6 Limits involving infinity
Definition. We say that f(x) has the limit L as x approaches
infinity, written

lim
x→∞

f(x) = L

if for every ∆y > 0 (think: smaller and smaller), there’s some X for
which

whenever x > X, we have |f(x)− L| < ∆y.

Δy

Δy X

L
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“As x gets bigger and bigger, f(x) stays closer and closer to L.“

Similarly, we say lim
x→−∞

f(x) = L if as x gets bigger and bigger in

the negative directly, f(x) stays closer and closer to L.

All limit rules from before, like sums, products, quotients,
compositions, etc. all still apply.
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All limit rules from before, like sums, products, quotients,
compositions, etc. all still apply:

66 Chapter 2 Limits and Continuity

(c) The function oscillates too much to have a limit: ƒ(x) has no limit as x S 0 because 
the function’s values oscillate between +1 and -1 in every open interval containing 
0. The values do not stay close to any single number as x S 0 (Figure 2.10c). 

The Limit Laws

A few basic rules allow us to break down complicated functions into simple ones when 
calculating limits. By using these laws, we can greatly simplify many limit computations.

THEOREM 1—Limit Laws 
If L, M, c, and k are real numbers and

lim
xSc

 ƒ(x) = L  and  lim
xSc

 g (x) = M, then

1. Sum Rule: lim
xSc

(ƒ(x) + g (x)) = L + M

2. Difference Rule: lim
xSc

(ƒ(x) - g (x)) = L - M

3. Constant Multiple Rule: lim
xSc

(k # ƒ(x)) = k # L

4. Product Rule: lim
xSc

(ƒ(x) # g (x)) = L # M

5. Quotient Rule: lim
xSc

  
ƒ(x)
g (x) = L

M , M ≠ 0

6. Power Rule: lim
xSc
3ƒ(x)4 n = L 

n, n a positive integer

7. Root Rule: lim
xSc
2n ƒ(x) = 2n L = L 

1>n, n a positive integer

(If n is even, we assume that ƒ(x) Ú 0 for x in an interval containing c.)

The Sum Rule says that the limit of a sum is the sum of the limits. Similarly, the next rules 
say that the limit of a difference is the difference of the limits; the limit of a constant times 
a function is the constant times the limit of the function; the limit of a product is the prod-
uct of the limits; the limit of a quotient is the quotient of the limits (provided that the limit 
of the denominator is not 0); the limit of a positive integer power (or root) of a function is 
the integer power (or root) of the limit (provided that the root of the limit is a real number).

There are simple intuitive arguments for why the properties in Theorem 1 are true 
(although these do not constitute proofs). If x is sufficiently close to c, then ƒ(x) is close to L 
and g (x) is close to M, from our informal definition of a limit. It is then reasonable that 
ƒ(x) + g (x) is close to L + M; ƒ(x) - g (x) is close to L - M; kƒ(x) is close to kL; ƒ(x)g (x) 
is close to LM; and ƒ(x)>g (x) is close to L>M  if M is not zero. We prove the Sum Rule in 
Section  2.3, based on a rigorous definition of the limit. Rules 2–5 are proved in Appendix 4. 
Rule 6 is obtained by applying Rule 4 repeatedly. Rule 7 is proved in more advanced texts. The 
Sum, Difference, and Product Rules can be extended to any number of functions, not just two.

EXAMPLE 5  Use the observations limxSc k = k and limxSc x = c (Example 3) and 
the limit laws in Theorem 1 to find the following limits.

 (a) lim
xSc

(x3 + 4x2 - 3)

(b) lim
xSc

 x
4 + x2 - 1

x2 + 5

(c) lim
xS-2

24x2 - 3
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Favorite examples:

lim
x→∞

1

x
= 0 and lim

x→−∞

1

x
= 0

Example:

lim
x→∞

5x2 + 8x− 3

3x2 + 2
= lim

x→∞

5x2 + 8x− 3

3x2 + 2

(
1/x2

1/x2

)
= lim

x→∞

5(x2/x2) + 8(x/x2)− 3/x2

3(x2/x2) + 2/x2

= lim
x→∞

5 + 8(1/x)− 3(1/x2)

3 + 2(1/x2)
=

5 + 8 · 0− 3 · 0
3 + 2 · 0

=
5

3
.
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Last time: lim
x→0

sin(x)

x
= 1.

Example. Let’s compute lim
x→∞

sin(1/x) · x.

(Appears to approach “0 · ∞”)

Make a substitution! Let y = 1
x , so that x = 1/y. Also,

as x→∞, we have y → 0.
So

lim
x→∞

sin(1/x) · x = lim
y→0

sin(y) · 1

y
= 1.

Similarly, as x→ −∞, we have y → 0. So

lim
x→−∞

sin(1/x) · x = lim
y→0

sin(y) · 1

y
= 1.
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Infinite limits

lim
x→0−

1

x

= −∞

lim
x→0+

1

x

=∞
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2.6  Limits Involving Infinity; Asymptotes of Graphs 107

Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater than the degree of the 
denominator, the graph has an oblique or slant line asymptote. We find an equation for 
the asymptote by dividing numerator by denominator to express ƒ as a linear function plus 
a remainder that goes to zero as x S {q.

EXAMPLE 10  Find the oblique asymptote of the graph of

ƒ(x) = x2 - 3
2x - 4

in Figure 2.58.

Solution We are interested in the behavior as x S {q. We divide (2x - 4) into 
(x2 - 3):

x
2 + 1   

2x - 4)x2 + 0x - 3   
x2 - 2x  

2x - 3
2x - 4

1

This tells us that

ƒ(x) = x2 - 3
2x - 4 = ¢ x

2 + 1≤ + ¢ 1
2x - 4≤  .

()*           (1)1*
linear g(x)          remainder

As x S {q, the remainder, whose magnitude gives the vertical distance between the 
graphs of ƒ and g, goes to zero, making the slanted line

g(x) = x
2 + 1

an asymptote of the graph of ƒ (Figure 2.58). The line y = g(x) is an asymptote both to 
the right and to the left. 

Notice in Example 10 that if the degree of the numerator in a rational function is 
greater than the degree of the denominator, then the limit as 0 x 0  becomes large is +q or 
-q, depending on the signs assumed by the numerator and denominator.

Infinite Limits

Let us look again at the function ƒ(x) = 1>x. As x S 0+, the values of ƒ grow without 
bound, eventually reaching and surpassing every positive real number. That is, given any 
positive real number B, however large, the values of ƒ become larger still (Figure 2.59).

Thus, ƒ has no limit as x S 0+. It is nevertheless convenient to describe the behavior 
of ƒ by saying that ƒ(x) approaches q as x S 0+. We write

lim
xS0+

 ƒ(x) = lim
xS0+

 1x = q.

In writing this equation, we are not saying that the limit exists. Nor are we saying that 
there is a real number q, for there is no such number. Rather, this expression is just a con-
cise way of saying that limxS0+ (1>x) does not exist because 1>x becomes arbitrarily 
large and positive as x S 0+.

x
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0 1 2 3 4 x- 1

1

- 1

- 2

- 3
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3

4

5

6

x = 2 Oblique
asymptote

The vertical distance
between curve and
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y =     + 1x
2

y = = +  1 +x2 -  3
2x -  4

1
2x -  4

x
2

FIGURE 2.58 The graph of the function 
in Example 10 has an oblique asymptote.

You can get as high
as you want by
taking x close enough
to 0. No matter how
high B is, the graph
goes higher.

x

y

You can get as low as
you want by taking
x close enough to 0.

No matter how
low -B is, the
graph goes lower.

x

x

B

-B

y = 1
x

0

FIGURE 2.59 One-sided infinite limits: 

lim
xS0+

 1x = q  and  lim
xS0-

 1x = -q.
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goes higher.
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FIGURE 2.59 One-sided infinite limits: 

lim
xS0+

 1x = q  and  lim
xS0-

 1x = -q.
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Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater than the degree of the 
denominator, the graph has an oblique or slant line asymptote. We find an equation for 
the asymptote by dividing numerator by denominator to express ƒ as a linear function plus 
a remainder that goes to zero as x S {q.

EXAMPLE 10  Find the oblique asymptote of the graph of

ƒ(x) = x2 - 3
2x - 4

in Figure 2.58.

Solution We are interested in the behavior as x S {q. We divide (2x - 4) into 
(x2 - 3):

x
2 + 1   

2x - 4)x2 + 0x - 3   
x2 - 2x  

2x - 3
2x - 4

1

This tells us that

ƒ(x) = x2 - 3
2x - 4 = ¢ x

2 + 1≤ + ¢ 1
2x - 4≤  .

()*           (1)1*
linear g(x)          remainder

As x S {q, the remainder, whose magnitude gives the vertical distance between the 
graphs of ƒ and g, goes to zero, making the slanted line

g(x) = x
2 + 1

an asymptote of the graph of ƒ (Figure 2.58). The line y = g(x) is an asymptote both to 
the right and to the left. 

Notice in Example 10 that if the degree of the numerator in a rational function is 
greater than the degree of the denominator, then the limit as 0 x 0  becomes large is +q or 
-q, depending on the signs assumed by the numerator and denominator.

Infinite Limits

Let us look again at the function ƒ(x) = 1>x. As x S 0+, the values of ƒ grow without 
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 1x = -q.
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Formal definition:
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In parts (a) and (b) the effect of the zero in the denominator at x = 2 is canceled be-
cause the numerator is zero there also. Thus a finite limit exists. This is not true in part (f), 
where cancellation still leaves a zero factor in the denominator. 

EXAMPLE 14  Find lim
xS  -  q

  2x5 - 6x4 + 1
3x2 + x - 7

.

Solution We are asked to find the limit of a rational function as x S -q, so we divide 
the numerator and denominator by x2, the highest power of x in the denominator:

lim
xS  -  q

  2x5 - 6x4 + 1
3x2 + x - 7  = lim

xS  -  q
  2x3 - 6x2 + x-2

3 + x-1 - 7x-2

 = lim
xS  -  q

  
2x2 (x - 3) + x-2

3 + x-1 - 7x-2

 = -q,

(e) lim
xS2

  x - 3
x2 - 4

= lim
xS2

  x - 3
(x - 2)(x + 2)  does not exist. Limits from left and from 

right differ.

(f) lim
xS2

  2 - x
(x - 2)3 = lim

xS2
  
-(x - 2)
(x - 2)3 = lim

xS2
  -1
(x - 2)2 = -q Denominator is positive, so  

values are negative near x = 2.

x-n S 0, x - 3 S -q

because the numerator tends to -q while the denominator approaches 3 as x S -q. 

Precise Definitions of Infinite Limits

Instead of requiring ƒ (x) to lie arbitrarily close to a finite number L for all x sufficiently close 
to c, the definitions of infinite limits require ƒ (x) to lie arbitrarily far from zero. Except for 
this change, the language is very similar to what we have seen before. Figures 2.62 and 2.63 
accompany these definitions.

y

x
0

B

y = f (x)

c - d c + d
c

FIGURE 2.62 For c - d 6 x 6 c + d, 
the graph of ƒ (x) lies above the line y = B.

x

y

0

-B

y = f (x)

c - d c + d
c

FIGURE 2.63 For c - d 6 x 6 c + d, 
the graph of ƒ (x) lies below the line y = -B.

DEFINITIONS
1. We say that ƒ (x)  approaches infinity as x approaches c, and write

lim
xSc

 ƒ (x) = q,

if for every positive real number B there exists a corresponding d 7 0 such 
that

ƒ(x) 7 B whenever 0 6 ! x - c ! 6 d.

2. We say that ƒ (x)  approaches negative infinity as x approaches c, and write

lim
xSc

 ƒ (x) = -q,

if for every negative real number -B there exists a corresponding d 7 0 
such that

ƒ(x) 6 - B whenever 0 6 ! x - c ! 6 d.

The precise definitions of one-sided infinite limits at c are similar and are stated in the 
exercises.

EXAMPLE 15  Prove that lim
xS0

  1
x2 = q.

Solution Given B 7 0, we want to find d 7 0 such that

0 6 ! x - 0 ! 6 d implies 1
x2 7 B.
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DEFINITIONS
1. We say that ƒ (x)  approaches infinity as x approaches c, and write

lim
xSc
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that
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General technique:
If f(x)→ 0± as x→ c±,

then 1/f(x)→ ±∞ as x→ c±.
(Check signs one side at a time.)
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EXAMPLE 14  Find lim
xS  -  q

  2x5 - 6x4 + 1
3x2 + x - 7

.
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Example: Compute lim
x→( 3
√

1/2)−

11x+ 2

2x3 − 1
and lim

x→( 3
√

1/2)−

11x+ 2

2x3 − 1
.

As x→ ( 3
√

1/2)−, we have

11x+ 2→

11 3
√

1/2 + 2 > 0

and 2x3 − 1→

0−.

∗ Here, 0− means 0 from the negative side, i.e. near 3
√

1/2, but
just to the left, we have 2x3 − 1 is negative.

1

So

lim
x→( 3√2)−

11x+ 2

2x3 − 1
= −∞.

(
pos

neg
= neg

)
Similarly, As x→ ( 3

√
1/2)+, we have

11x+ 2→ 11 3
√

1/2 + 2 > 0 and 2x3 − 1→ 0+.
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lim
x→( 3√2)+

11x+ 2

2x3 − 1
=∞.

(
pos

pos
= pos

)
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Limits checklist

1. Can you just plug in? If so, do that.

2. Can you do some algebraic manipulation and cancel out
problematic factors?
(Most common: f(x)/g(x) with f(x)→ 0 and g(x)→ 0.)

3. Do you know relevant special limits? (e.g. limx→0 sin(x)/x)

4. Is your limit of the form f(x)/g(x) with g(x)→ 0 and
f(x) 6→ 0? Analyze one side at a time.



Infinite limits at infinity: long-term behavior
If f(x)→∞ as x→∞, sometimes we can do a better job of
describing what’s going on.

Namely, is the function growing slowly? exponentially? linearly?
erratically? (Think: Zoom way out and look at the big picture. Does your

function start to look like another simpler function after a while?)

Example: lim
x→∞

15
sin(x)

x
+ x− 6.

Answer: On the one hand, we have sin(x)
x → 0 (by the sandwich

theorem) and x− 6→∞, so lim
x→∞

15
sin(x)

x
+ x− 6 =∞.

On the other hand, look at that graph!

10 20 30

10

20

30

(As x gets large, f(x)
behaves more and more
like the line y = x− 6.)
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Namely, is the function growing slowly? exponentially? linearly?
erratically? (Think: Zoom way out and look at the big picture. Does your

function start to look like another simpler function after a while?)

Example: lim
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Long-term behavior: Suppose as x→ ±∞, we have

f(x)→ 0 and g(x) 6→ 0.

Then for “large x”, we have f(x) + g(x) ≈ g(x).

We call g(x) the dominant term(s).
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f(x)→ 0 and g(x) 6→ 0.

Then for “large x”, we have f(x) + g(x) ≈ g(x).
We call g(x) the dominant term(s).

Ex. For large x, we have
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Long-term behavior: Suppose as x→ ±∞, we have

f(x)→ 0 and g(x) 6→ 0.

Then for “large x”, we have f(x) + g(x) ≈ g(x).
We call g(x) the dominant term(s).

Ex. For large positive x, we have e−x + e2x ≈ e2x,
and for large negative x, we have e−x + e2x ≈ e−x.

(So for large positive x, the function e2x dominates;
and for large negative x, the function e−x dominates.)
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Long-term behavior: Suppose as x→ ±∞, we have

f(x)→ 0 and g(x) 6→ 0.

Then for “large x”, we have f(x) + g(x) ≈ g(x).

Disguised example: Note that

lim
x→∞

3− 2x2

5x− 1

(
1/x

1/x

)
= lim

x→∞

3/x− 2x

5− 1/x

→ 0−∞
→ 5− 0

= −∞.

But what general shape does 3−2x2

5x−1 take for large x?

Strategy: Put p(x)/q(x) into the sum of polynomials and rational
functions where each has deg(denominator) > deg(numerator), via
long division.

deg(5x− 1) > deg( 73
25
)X−2x2 0 · x 3+ +5x− 1

−2
5x

2
25− (73/25)

5x−1+

So
3− 2x2

5x− 1
= −2

5
x− 2

25
+

(73/25)

5x− 1
.
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Long-term behavior: Suppose as x→ ±∞, we have

f(x)→ 0 and g(x) 6→ 0.

Then for “large x”, we have f(x) + g(x) ≈ g(x).
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Of course, for x very close to 1/5, f(x) is much smaller than
g(x). So close to x = 1/5, we have f(x) + g(x) ≈ f(x), and f(x)
becomes the dominant term.
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Limits and graphing: Asymptotes

Horizontal: If f(x)→ L as x→∞ and/or as x→ −∞, we say
y = f(x) has a horizontal asymptote y = L.

y=L

y=f(x)

y=L

y=f(x)

y=L

y=f(x)

Vertical: If f(x)→ ±∞ as x→ c+ and/or as x→ c−, we say
y = f(x) has a vertical asymptote x = c.

x=c y=f(x) x=c y=f(x) x=c y=f(x)
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Limits and graphing: Asymptotes

Oblique or Slant line: If f(x) ≈ mx+ b for large (positive and/or
negative) x, we say y = f(x) has an oblique (a.k.a. slant line)
asymptote y = mx+ b.
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