Recall: Continuity

Let a be an interior point or an endpoint of D.

Ex. f(x) is discontinuous

at = 4 and 5.

No other points are fair game!

Let a be an interior point or an endpoint of D.
A function f is continuous at a if lim,_,, f(z) = f(a).
Checklist:

1. Does (a) lim f(z) exist? (b) lim+ f(z) exist?
2. Does %}g{ll f(z) exist? (i.e. does (a) = (b)?)
3. Does f(a) = ilg}lf(:v)?

If the answer to any of 1.-3. is “no”, then f(z) is discontinuous at
a.



Right Continuity and Left Continuity

Definition

A function f(z) is right continuous at a point a if it is defined on
an interval [a,b) and lim,_, .+ f(x) = f(a).

Similarly, a function f(x) is left continuous at a point a if it is
defined on an interval (b,a| and lim,_,,- f(z) = f(a).

Example:

f(z)is

a) continuous at every interior point in D except x = 4 and 5;

additionally left continuous at x =4 and z = 7.

()
(b) only right continuous at those points included in (a); and
()



Suppose a function f has no isolated points in its domain.

Definition

A function f is continuous over its domain D if (1) is is continuous at
every interior point of D, and (2) it is left (or right) continuous at every
endpoint of D. Otherwise, it has a discontinuity at each point in D
which violates (1) or (2).

Is @ an interior |
point of D?

Does the limit exist from the
right of a? from the left of a?

Is f(x) left (or right) continuous
(as appropriate)?

Is the two-sided
limit equal to f(a)?

f(x) is discontinuous
at x=a

f(x) is continuous
at x=a



Filling and Fixing
Suppose a is a point of discontinuity in D
(a) If a is an interior point and lim,_,, f(z) = L exists; or
(b) if a is an endpoint and lim,_,,+ f(z) = L exists,
then we say f(x) has a removable discontinuity:

. _{ﬂw z#a

L r=a
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Filling and Fixing
Suppose a is a point of discontinuity in D
(a) If a is an interior point and lim,_,, f(z) = L exists; or
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Filling and Fixing
Suppose a is a point of discontinuity in D
(a) If a is an interior point and lim,_,, f(z) = L exists; or
(b) if a is an endpoint and lim,_,,+ f(z) = L exists,

then we say f(x) has a removable discontinuity:

. _{ﬂ@ z#a

L r=a

Example: f(x) has a removable discontinuity in exactly one place:

@) as
f(x)_{m z=5



Filling and Fixing
Suppose a is a hole in D (a is arbitrarily close to points in D, but not in D).

(a) If a would be an interior point and lim,_,, f(z) = L exists; or
(b) if a would be an endpoint and lim,_,,+ f(x) = L exists,

then we say f(x) has a continuous extension:

@) = {f(rv) r#a

L r=a
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Filling and Fixing
Suppose a is a hole in D (a is arbitrarily close to points in D, but not in D).

(a) If a would be an interior point and lim,_,, f(z) = L exists; or
(b) if a would be an endpoint and lim,_,,+ f(x) = L exists,

then we say f(x) has a continuous extension:
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Filling and Fixing
Suppose a is a hole in D (a is arbitrarily close to points in D, but not in D).

(a) If a would be an interior point and lim,_,, f(z) = L exists; or
(b) if a would be an endpoint and lim,_,,+ f(x) = L exists,

then we say f(x) has a continuous extension:

Example: f(x) has continuous extensions in exactly two places:

N USRI C R



Examples

(A) Which of the following have removable discontinuities? For
those which do, what are the alternate functions with those
discontinuities removed?

(B) Which of the following have continuous extensions? For those
which do, what are those extensions?

2 _
L) ="
2 s = {5 T2
3 fw) = &



Examples

(A) Which of the following have removable discontinuities? For
those which do, what are the alternate functions with those
discontinuities removed?

(B) Which of the following have continuous extensions? For those
which do, what are those extensions?

1. f(x) = 22_—24 Cont. extension: f(z) = {i(J) j#j

2. f(z) = {Zina: i fzg Removable disc.: f(z) = sin(x)

3. f(z) = m No continuous extension.
x



One application: The Intermediate Value Theorem
Suppose f is continuous on a closed interval [a, b].

If fla) < C < f(b) or fla) > C > f(b),
then there is at least one point ¢ in the interval [a, b] such that

fle)=C.



One application: The Intermediate Value Theorem
Suppose f is continuous on a closed interval [a, b].

If fla) < C < f(b) or fla) > C > f(b),

then there is at least one point ¢ in the interval [a, b] such that

fle)=C.
| 7 | 7
L L




One application: The Intermediate Value Theorem
Suppose f is continuous on a closed interval [a, b].

If fla) < C < f(b) or fla) > C > f(b),

then there is at least one point ¢ in the interval [a, b] such that

fle)=C.
| 7 | 7
o/ /
[ a c b | a b | 2 b

Example 1: Show that the equation 2° — 3z + 1 = 0 has at least
one solution in the interval [0, 1].
Example 2: Show every polynomial

p(x) = apx™ + -+ 4+ a1z + ap, an #0

of odd degree has at least one real root (a solution to p(x) = 0).



Our favorite application: Rates of change!

It only makes sense to study the rate of change of a function where
that function is continuous (or maybe where the function has a
continuous extension)!




2.6 Limits involving infinity
Definition. We say that f(z) has the limit L as x approaches
infinity, written
lim f(z) =1L
T—>00
if for every Ay > 0 (think: smaller and smaller), there's some X for
which
whenever x > X, we have |f(z) — L| < Ay.
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2.6 Limits involving infinity
Definition. We say that f(z) has the limit L as x approaches
infinity, written
lim f(z) =1L
T—>00
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2.6 Limits involving infinity
Definition. We say that f(z) has the limit L as x approaches
infinity, written
lim f(z) =1L
T—>00
if for every Ay > 0 (think: smaller and smaller), there's some X for
which
whenever x > X, we have |f(z) — L| < Ay.
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2.6 Limits involving infinity

Definition. We say that f(z) has the limit L as = approaches
infinity, written
lim f(x)=1L
T—>00
if for every Ay > 0 (think: smaller and smaller), there's some X for
which
whenever x > X, we have |f(z) — L| < Ay.

“As x gets bigger and bigger, f(x) stays closer and closer to L."



2.6 Limits involving infinity

Definition. We say that f(z) has the limit L as = approaches
infinity, written

lim f(x)=1L

Z—>00
if for every Ay > 0 (think: smaller and smaller), there's some X for
which

whenever x > X, we have |f(z) — L| < Ay.

“As x gets bigger and bigger, f(x) stays closer and closer to L.

Similarly, we say lim f(x) = L if as = gets bigger and bigger in
Tr——00

the negative directly, f(x) stays closer and closer to L.



2.6 Limits involving infinity

Definition. We say that f(z) has the limit L as = approaches
infinity, written

lim f(x)=1L

Z—>00
if for every Ay > 0 (think: smaller and smaller), there's some X for
which

whenever x > X, we have |f(z) — L| < Ay.

“As x gets bigger and bigger, f(x) stays closer and closer to L.

Similarly, we say lim f(x) = L if as = gets bigger and bigger in
Tr——00

the negative directly, f(x) stays closer and closer to L.

All limit rules from before, like sums, products, quotients,
compositions, etc. all still apply.



All limit rules from before, like sums, products, quotients,
compositions, etc. all still apply:

THEOREM 1 —Limit Laws
If L, M, < and k are real numbers and

hm fx) =L and 11m g(x) = M, then

1. Sum Rule: ii_r)r;&of(x) + g(x)) =L+ M

2. Difference Rule: lirr;(f(x) —gx)=L—-M

3. Constant Multiple Rule: )11_1)1}% fx) =k-L

4. Product Rule: iiir;g(x) cgx)=L-M

5. Quotient Rule: tim ;% - A% M0

6. Power Rule: lin}/ [ f(x)]" = L" n apositive integer

7. Root Rule: hm\/f(T VL =LY na positive integer

X—>¢oo

(a, =)
(If n is even, we assume that f(x) = O for x in an interval-eentatning-e.)
(And similarly for —o0)



Favorite examples:

lim — =0
T—00 I

and



Favorite examples: For any integer n > 1,

lim — =0 and Iim — =0



Favorite examples: For any integer n > 1,

lim — = and Iim — =0
z—oo M r——o0 "
Example:
522 + 8z — 3



Favorite examples: For any integer n > 1,

lim — = and lim — =0
x—o0 z——oo L™
Example:
i 5a% +8r —3 i 50% + 8z —3 (1/2”
oo 31212 ameo 32242 1/x?



Favorite examples: For any integer n > 1,

lim — =0 and lim — =0
z—oo M r——o0 "
Example:
i 5a% +8r —3 i 50% + 8z —3 (1/2”
oo 31212 ameo 32242 1/x?

_ 5 5(x2/2%) + 8(x/x?) — 3/2?
= 3(x2/2?) +2/2?



Favorite examples: For any integer n > 1,

lim — =0 and lim — =0
x—o0 z——oo L™
Example:
i 5a% +8r —3 i 50% 4+ 8z — 3 (1/2?
i 322+2 oo 322+2  \1/22
. 5(2?/2?) + 8(z/2?) — 3/
= lim
T—00 3<$2/$2) + 2/33'2
1/1) — 1 2
~ lim 54 8(1/x) —3(1/x%)

T—00 3+2(1/x2)



Favorite examples: For any integer n > 1,

lim — =0 and lim — =0
x—o0 z——o0 "
Example:
. 5?48 -3 . bx?+8x—3 [1/a?
lim ——— = lim
oo 3x2 42 z—oo  3x2+2 1/22
. 5(2?/2?) + 8(z/2?) — 3/
= lim
T—00 3(1’2/$2) + 2/:6'2
_ 2 .0—3-
— lim 5+8(1/x) —3(1/2%) 5+8-0-3-0

z—00 3+2(1/x2) 3420



Favorite examples: For any integer n > 1,

lim — =0 and lim — =0
z—oo M r——o0 M
Example:
i 5x2+8x—3_1, 50% 4+ 8z — 3 (1/2?
i 322+2 oo 322+2  \1/22

i 5(x2/2?) + 8(x/x?) — 3/2?
Tob00 3(x2/x2) +2/2?
5+8(1/x) —3(1/z*) 5+8-0-3-0 |5

— i - |21
woo 3+ 2(1/22) 3+2-0 3




Favorite examples: For any integer n > 1,

lim — =0 and lim — =0
x—o0 z——oo L™
Example:
. 52?4+ 8r—3 . 5x?48x—3 [1/2?
lim ——— = lim
Z—00 3x2+2 z—oo  3x2 42 1/1’2
. 5(2?/2?) + 8(z/2?) — 3/
= lim
T—00 3($2/x2) + 2/1’2
— im 5+8(1/z) =3(1/2%) 5+8-0-3-0 |5
oo 34 2(1/22) - 342-0 3]

y

)




Favorite examples: For any integer n > 1,

lim — = and lim — =0

Example: ggli)nolom = g .

Similarly,
. 522 4+ 8z — 3
lim ——————
T——00 32 + 2



Favorite examples: For any integer n > 1,

lim — = and Iim — =0
x—00 " z——o0 "

Example: lim ——— =| =

z—oo  3x2 42 3/
Similarly,
. 5z’ +8x -3 . bx?+8x—3 [1/2?
lim ———— = lim ‘
z—oco 31242 z—oc0 31242 1/I2



Favorite examples: For any integer n > 1,

lim — = and Iim — =0
x—00 " z——o0 "

Example: lim ——— =| =

z—oo  3x2 42 3
Similarly,
. 5z’ +8x -3 . bx?+8x—3 [1/2?
lim ———— = lim ‘
z—oco 31242 z—oc0 31242 1/22
1/2) — 1 2
L B80/1) = 3(1/s?)

T——00 34 2(1/2?)



Favorite examples: For any integer n > 1,

lim — = and Iim — =0
x—00 " z——o0 "

Example: lim ——— =| =

z=c0  3x2+2 37
Similarly,
. 5z’ +8x -3 . bx?+8x—3 [1/2?
llHl —_— = 11m
z—oco 31242 z—oc0 31242 1/$2
1/z) — 3(1/x2 0—-3-0
~ lim 5+8(1/x) —3(1/z*) 548 3

T——00 34 2(1/22) - 3+2-0



Favorite examples: For any integer n > 1,

lim — = and Iim — =0
x—00 " z——o0 "

Example: lim ——— =| =

z=c0  3x2+2 37
Similarly,
. 5z’ +8x -3 . bx?+8x—3 [1/2?
llHl —_— = 11m
z—oco 31242 z—oc0 31242 1/$2
1/z) — 3(1/x2 0—-3-0
_ iy 2F8(1/2) —3(1/2%) _ 5+8 3-0 1[5

so-c0 3+ 2(1/22) 3+2-0 30



Favorite examples: For any integer n > 1,

lim — =0 and Iim — =0
z—o0 r——oo
Example: lLim M — §
P e T 322 |3
Similarly,
. 5z’ +8x -3 . 5x? 48z —3 [1/a?
lim ———— = lim
500 31242 z5"c0 31242 1/.132
~ lm 5+8(1/z) =3(1/2%) 5+8-0-3-0 |5
e 3+ 2(1/22) S 3+2.0 |3




For any integer n > 1,

lim — =0 and
z—o0
Example:
. 11z + 2
zlﬁnolo 203 — 1




For any integer n > 1,

lim — =0
z—o0

Example:

zhﬁnolo 23 —1 xLoo 223 — 1

11x+2_ . 11z +2

and

(1

)



For any integer n > 1,
lim — =0 and lim — =0
z—o0 " x——oo L™

Example:

lim

Mz4+2 . 1la+2 1/ 1z /2%) + 2(1/27)
= lim o——r <1/I3> = lim 2023 /%) — (1/29)

00 23 —1 aclaoo 2¢3 — 1



For any integer n > 1,

lim — =0 and lim — =0
z—o0 M rz——o0 M
Example:
o 22 1le2 1/a3 i 11(z/2%) +2(1/23)
im = li = lim
=00 203 — 1  a—oo 223 — 1 \ 1/23 z—o0 2(x3/x3) — (1/23)

— I 11(1/2%) +2(1/2%)
e 2—1/a3




For any integer n > 1,

lim — =0 and lim — =0
z—o0 M rz——o0 M
Example:
3 3 3
lim lz+2 im MMz +2 (1/x ~ lim 11(z/z?) +2(1/x7)
=00 203 — 1  a—oo 223 — 1 \ 1/23 z—o0 2(x3/x3) — (1/23)

. 11(1/2?) +2(1/2%)  11-0+42-0
= lim =
T—00 2—1/x3 2—-0




For any integer n > 1,

lim — =0 and lim — =0
z—o0 M rz——o0 M
Example:
3 3 3
lim r+2 im MMz +2 (1/x ~ lim 11(z/z?) +2(1/x7)
w00 223 — 1 200 223 — 1 \ 1/a3 z—o0 2(x3/x3) — (1/23)

11(1/ 22 3
— lim (1/2%) +2(1/2%) 11-0+2-0 _[0]
T—00 2—1/.7)3 2—0




For any integer n > 1,

lim — =0 and lim — =0
z—o0 M rz——o0 M
Example:
3 3 3
lim r+2 im MMz +2 (1/x ~ lim 11(z/z?) +2(1/x7)
w00 223 — 1 200 223 — 1 \ 1/a3 z—o0 2(x3/x3) — (1/23)

11(1/2?) +2(1/2%)  11- 0+2 0 _[0]

=l =
zl—>nolo 2 — 1/.%’3 2 —
Similarly,
1z + 2 1(1/2*) +2(1/2%) 0 0]

mgmoo 213 — 1 xLl\IElOO 2 — (1/:103) 2



For any integer n > 1,

lim — =0 and lim — =0
z—o0 M r——o0 "
Example:
o 22 1le2 1/a3 i 11(z/2%) +2(1/23)
im i = lim
w00 223 — 1 200 223 — 1 \ 1/a3 z—o0 2(x3/x3) — (1/23)

11(1/2?) +2(1/2%)  11- 0+2 0 _[0]

- zh—>nolo 2—1/x3 2
Similarly,
1z + 2 1(1/2*) +2(1/2%) 0 0]

mgmoo 213 — 1 xgrfnoo 2 — (1/:63) 2




Last time: lim sin(z) =1.

x—0 €T




sin(x)

Last time: lim =1.

x—0 €T

Example. Let's compute lim sin(1/z) - x.
T—00



sin(x)

Last time: lim =1.

z—0 x
Example. Let's compute lim sin(1/z) - x.
T—00

(Appears to approach “0 - o0")

Make a substitution! Let y = 1

T



Last time: lim sin(z) =1.

x—0 €T

Example. Let's compute lim sin(1/z) - x.
T—00
(Appears to approach “0 - o0")
Make a substitution! Let y = % so that z = 1/y. Also,

Ev
as x — 0o, we have y — 0.
So

L o 1
xlggo sin(1/x) -x = ilg(l) sin(y) - "



Last time: lim sin(z) =1.

x—0 €T

Example. Let's compute lim sin(1/z) - x.
T—00
(Appears to approach “0 - o0")
Make a substitution! Let y = % so that z = 1/y. Also,

x!
as x — oo, we have y — 0.
So

. . .. 1
Jim sin(1/z) -z = limsin(y) - = = 1.



sin(x)

Last time: lim =1.

z—0 €T
Example. Let's compute lim sin(1/z) - x.
T—00
(Appears to approach “0 - o0")
Make a substitution! Let y = % so that z = 1/y. Also,

x!
as x — 0o, we have y — 0.
So
1
lim sin(1/x) -z = lim si = =1
Jim sin(1/x) - x ylg(l)sm(y) ;
Similarly, as z — —o0, we have y — 0.



sin(x) _

Last time: lim
x—0 x

Example. Let's compute lim sin(1/z) - x.
T—00
(Appears to approach “0 - o0")
Make a substitution! Let y = % so that z = 1/y. Also,

x!
as x — oo, we have y — 0.
So
. . . . 1
Jim sin(1/z) -z = limsin(y) - = = 1.

Similarly, as z — —o0, we have y — 0. So

1
i (/) - 7 — lim i 1
im sin(1/z) - x Jimny sin(y) ,



sin(x) _

Last time: lim
x—0 x

Example. Let's compute lim sin(1/z) - x.
T—00
(Appears to approach “0 - o0")
Make a substitution! Let y = % so that z = 1/y. Also,

x!
as x — oo, we have y — 0.
So
. . . . 1
Jim sin(1/z) -z = limsin(y) - = = 1.

Similarly, as z — —o0, we have y — 0. So

1
lim sin(1/z) -z = lim sin(y) - - = 1.
im sin(1/z) - x Jimny sin(y) ,



sin(x) _

Last time: lim
x—0 x

Example. Let's compute li_>m sin(1/z) - x.
X oo
(Appears to approach “0 - o0")
Make a substitution! Let y = % so that z = 1/y. Also,

x!
as x — oo, we have y — 0.
So
. . . . 1
Jim sin(1/z) - @ = limysin(y) - o= 1.

Similarly, as z — —o0, we have y — 0. So
1
li in(1/x) - x = lim si = =1.
im sin(1/z) - x Jimny sin(y) ;

y




Infinite limits

lim —
z—0— T
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Infinite limits




Infinite limits

51 B¢ goes higher.

You can get as high
as you want by
taking x close enough
to 0. No matter how
high B is, the graph

-1
X

You can get as low as| ¢
you want by taking

=@ ——
<

No matter how
low —B is, the
graph goes lower.

» —B

x close enough to 0.



Formal definition:
We say that f(x) approaches infinity as x approaches c, and write

lim f(x) = oo,
X—C

if for every positive real number B there exists a corresponding 6 > 0 such
that

f(x) > B whenever 0 < |x — c| < 8.

y
K#@c)




Formal definition:
We say that f(x) approaches infinity as x approaches c, and write

lim f(x) = oo,

X—C
if for every positive real number B there exists a corresponding 6 > 0 such
that

f(x) > B whenever 0 < |x — c| < 8.
y

General technique:
If f(x) — 0% as x — c*,
then 1/f(z) — o0 as x — c*.
(Check signs one side at a time.)



11 2 11 2
Example: Compute lim Tt d lim Tt

———— an .
e (Y- 200 =1 i) 200 1




Example: Compute lim
e (¥/1/2)-
As x — (/1/2)~, we have

11l +2 —

11z + 2 an
2r3 — 1

and

d

lim
z—(3/1/2)~

203 — 1 —




Example: Compute lim
e (¥/1/2)-
As x — (/1/2)~, we have

11z + 2 an
2r3 — 1

11z +2—11/1/2+2>0 and

d

lim
z—(3/1/2)~

203 — 1 —




11 2 11 2
Example: Compute lim Tt d lim Tt

——— an .
e (Y1j2)- 208 =1 /1y 200 — 1
As x — (/1/2)~, we have

Hz+2—-119/1/242>0 and 223—-1—-0".

« Here, 0~ means 0 from the negative side, i.e. near {/1/2, but
just to the left, we have 223 — 1 is negative.

%




11 2 11 2
Example: Compute lim Tt and lim Tt

o (3/172)- 205 — 1 1° e (Y/172)- 200 — 1
As x — (/1/2)~, we have
Hz+2—-119/1/242>0 and 223—-1—-0".

« Here, 0~ means 0 from the negative side, i.e. near {/1/2, but
just to the left, we have 223 — 1 is negative.

%

lim 11z +2 = —00 (pos = neg>
N 223 — 1 '

So




11 2 11 2
Example: Compute lim Tt and lim Tt

x_)W)72$3—1 x%(w)fmj?’—l
As x — (/1/2)~, we have

Hz+2—-119/1/242>0 and 223—-1—-0".

« Here, 0~ means 0 from the negative side, i.e. near {/1/2, but
just to the left, we have 223 — 1 is negative.

%

lim 11z +2 = —00 (pos = neg>
N 223 — 1 '

So

Similarly, As x — ({/1/2)", we have
e +2—11¢/1/2+2>0 and 22° -1 07,



11 2 11 2
Example: Compute lim Tt and lim L
213 — 1

(AR 2L
As z — ({/1/2)~, we have

e +2—-11¢/1/24+2>0 and 22°—1-0".

« Here, 0~ means 0 from the negative side, i.e. near {/1/2, but
just to the left, we have 223 — 1 is negative.

So

11z + 2 (pos >
lim  ——— = —o0. — = neg
x—>(\/>)* 22° — 1

Similarly, As x — ({/1/2)", we have
Hr+2—-11¢/1/24+2>0 and 22°—1—-0".

I 11z 42 pos
im ———— = oo. —— = pos
o (Y3)+ 223 — 1 pos P

So
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Example: Compute lim Tt and lim Tt

(1) 200 =1 - 200 -1

. 11z + 2 . 11x 42
lim 53 7 = . lim 53— =
e—(¥2)- 22° — 1 e (Y2)+ 22° — 1

S

-1
2
3
-4



Limits checklist

1. Can you just plug in? If so, do that.

2. Can you do some algebraic manipulation and cancel out
problematic factors?

(Most common: f(z)/g(x) with f(z) — 0 and g(z) — 0.)
3. Do you know relevant special limits? (e.g. lim,_,¢sin(z)/z)

4. Is your limit of the form f(z)/g(x) with g(x) — 0 and
f(z) # 07 Analyze one side at a time.



Infinite limits at infinity: long-term behavior
If f(x) — oo as x — oo, sometimes we can do a better job of
describing what's going on.
Namely, is the function growing slowly? exponentially? linearly?
erratically? (Think: Zoom way out and look at the big picture. Does your

function start to look like another simpler function after a while?)
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describing what's going on.
Namely, is the function growing slowly? exponentially? linearly?
erratically? (Think: Zoom way out and look at the big picture. Does your

function start to look like another simpler function after a while?)

sin(@) |, g,

Example: lim 15
Answer: On the one hand, we have sm( ) 50 (by the sandwich
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On the other hand, look at that graph!
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Infinite limits at infinity: long-term behavior
If f(x) — oo as x — oo, sometimes we can do a better job of
describing what's going on.
Namely, is the function growing slowly? exponentially? linearly?
erratically? (Think: Zoom way out and look at the big picture. Does your

function start to look like another simpler function after a while?)

sin(@) |, g,

Example: lim 15
Answer: On the one hand, we have sm( ) 50 (by the sandwich

$M@+x—6:m

theorem) and x — 6 — oo, so lim 15
T—r00

On the other hand, look at that graph!

130

20 (As z gets large, f(x)
behaves more and more
like the line y = = — 6.)
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Long-term behavior: Suppose as x — +00, we have

f(z) -0 and g(z) A 0.
Then for “large 2", we have f(x) + g(x) =~ g(z).
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We call g(z) the dominant term(s).



Long-term behavior: Suppose as x — 400, we have
f(z) -0 and g(z) A 0.

Then for “large =", we have f(z) + g(z) =~ g(x).
We call g(z) the dominant term(s).

Lao Ex: For large x, we have
\ 158111,(.1.) +x—6=~x—06.
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Long-term behavior: Suppose as x — 400, we have

f(z) -0 and g(z) A 0.

Then for “large =", we have f(z) + g(z) =~ g(x).
We call g(z) the dominant term(s).

430

" Ex: For large x, we have

+x—6~x—0.

10 sin(x)

\ 15
L)d M 20 %

Ex: For large x, we have

! 422210 ~ 222 — 10.
4 T+ 3




Long-term behavior: Suppose as x — +00, we have

f(z) =0 and g(z) A 0.

Then for “large z", we have f(z) + g(z) =~ g(x).
We call g(z) the dominant term(s).

Ex. For large x, we have

cos(z)

3—3

+ sin(x) = sin(z).
"

1
/\ -9.42 6.28 -3.14 3.14




Long-term behavior: Suppose as x — 400, we have

f(z) =0 and g(z) A 0.
Then for “large z", we have f(z) + g(z) =~ g(x).
We call g(z) the dominant term(s).

Ex. For large positive =, we have e 4 2% ~ %7,
and for large negative x, we have e % 4 €% ~ 77,

(So for large positive z, the function e2* dominates;
and for large negative z, the function e~* dominates.)




Long-term behavior: Suppose as x — +00, we have

f(z) >0 and g(z) A 0.
Then for “large =", we have f(z) + g(z) =~ g(x).

Disguised example: Note that
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f(z) >0 and g(z) A 0.
Then for “large =", we have f(z) + g(z) =~ g(x).

Disguised example: Note that
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lim R s
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Long-term behavior: Suppose as x — +00, we have

f(z) >0 and g(z) A 0.
Then for “large =", we have f(z) + g(z) =~ g(x).

Disguised example: Note that
3 — 222 (W) oy 3/x —2x — 0 — o0

1z im

lim ey 5—1/;6 —5—-0

z—oo by — 1




Long-term behavior: Suppose as x — +00, we have

f(z) >0 and g(z) A 0.
Then for “large =", we have f(z) + g(z) =~ g(x).

Disguised example: Note that

lim
z—oo by — 1

1m

1/x) 2500 5—1/x —5-0

3—23:2(1/;,,-)_1, 3/x —2x — 0 — o0 _



Long-term behavior: Suppose as x — +00, we have

f(z) >0 and g(z) A 0.
Then for “large =", we have f(z) + g(z) =~ g(x).

Disguised example: Note that

3—22% (1/x . 3/x—2z 00
—— | = lim ———F
1/x z—=oo 5 —1/x —5—0

But what general shape does

lim
z—oo br — 1

9.2
35362_9”1 take for large x7

—0Q.
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long division.
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Long-term behavior: Suppose as x — 400, we have

f(x) =0 and g(x) 4 0.
Then for “large 2", we have f(x) + g(x) =~ g(z).

Disguised example: Note that
3—22% [1/)x . 3/zr—2x —0—0o0
—— | = lim ——
1/x g0 5 —1/x —5—0
3—222

But what general shape does +_=5- take for large 7

lim
x—oo by — 1

Strategy: Put p(x)/q(z) into the sum of polynomials and rational
functions where each has deg(denominator) > deg(numerator), via
long division.

br —1 9272 + 0-2 + 3
X



Long-term behavior: Suppose as x — 400, we have

f(z) >0 and g(z) A 0.
Then for “large =", we have f(z) + g(z) =~ g(x).

Disguised example: Note that
3—22% (1/x . 3/r—2r —0—o0
1/x z—o00 5 —1/x — 50
3—2x2

But what general shape does =4 take for large 7

= —0OQ.

11m
x—oo by — 1

Strategy: Put p(x)/q(z) into the sum of polynomials and rational
functions where each has deg(denominator) > deg(numerator), via
long division.

2

or — 1 222 + 0.z + 3
—(-22% +

[S3{1\)
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Long-term behavior: Suppose as x — 400, we have
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Long-term behavior: Suppose as x — 400, we have

f(z) >0 and g(z) A 0.
Then for “large =", we have f(z) + g(z) =~ g(x).

Disguised example: Note that
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Long-term behavior: Suppose as x — 400, we have

f(z) >0 and g(z) A 0.
Then for “large =", we have f(z) + g(z) =~ g(x).

Disguised example: Note that
3—22% (1/x . 3/r—2r —0—o0
1/x z—o00 5 —1/x — 50
3—2x2

But what general shape does =4 take for large 7

= —0OQ.

11m
x—oo by — 1

Strategy: Put p(x)/q(z) into the sum of polynomials and rational
functions where each has deg(denominator) > deg(numerator), via
long division.

2
—5r 25




Disguised example: Note that

. 3-—22% [1/x . 3/x—2x —0— o0
lim —_— = Jim ——mM8M8M8 = —00.
z—oo by —1 \ 1/x z—o00 5 —1/x — 50

3—2z2

But what general shape does =4 take for large 7

Strategy: Put p(x)/q(z) into the sum of polynomials and rational
functions where each has deg(denominator) > deg(numerator), via
long division.
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Disguised example: Note that

3—22% [1/)x . 3/r—2r - 00—
—— | = lim —7-——
1/x z—o00 5 —1/x — 50

2
But what general shape does 35;2_“1 take for large z?

] -

Strategy: Put p(x)/q(z) into the sum of polynomials and rational
functions where each has deg(denominator) > deg(numerator), via
long division.
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Disguised example: Note that

3 — 222 (1/1:) . 3/r—2r - 00—
= = lim ——— = —o0.
1/z
3—222

T—+00 5—1/$ —5—-0
But what general shape does =4 take for large 7

11
r—oo by — 1

Strategy: Put p(z)/q(z) into the sum of polynomials and rational
functions where each has deg(denominator) > deg(numerator), via
long division.

5 T 35

ba — 1 |—2x2 + 0.z + 3
—(-222 + 3a)

0o + -2z +




Disguised example: Note that

3—22% [1/x . 3/r—2r - 00—

im —— | = lim ——— = —00.
z—oo b — 1 1/'[' T—00 5—1/x —5—0
But what general shape does 2 = 23” take for large x7?

Strategy: Put p(z)/q(z) into the sum of polynomials and rational
functions where each has deg(denominator) > deg(numerator), via
long division.

2 2
5 T 35
Sr — 1 |—2x2 + 0.z + 3

—(-222 + 3a)

0 + -2z + 3
2

B deg(5z—1) > deg(Z22)v



Disguised example: Note that

3—22% [1/x . 3/r—2r - 00—

im —— | = lim ——— = —00.
z—oo b — 1 1/'[' T—00 5—1/x —5—0
But what general shape does 2 = 23” take for large x7?

Strategy: Put p(z)/q(z) into the sum of polynomials and rational
functions where each has deg(denominator) > deg(numerator), via
long division.

_2 _ 2 (73/25)
57 25 + 5t

ba — 1 |—2x2 + 0.z + 3
—(-222 + 3a)

0 + -2z + 3
2

B deg(5z—1) > deg(Z22)v



Disguised example: Note that
3—22% [1/x . 3/x—2x —0— o0
—— | = lim ——— = —00.
1/;’1,' T—00 5—1/1’ —+5—-0

2
But what general shape does 3572“ take for large z?
rz—1
Strategy: Put p(z)/q(x) into the sum of polynomials and rational functions
where each has deg(denominator) > deg(numerator), via long division.

_2 _ 2 (73/25)
= I A v

z—o0o by — 1

B o

)

;—g — deg(5z — 1) > deg(22)v’

3—22% 2 2 (73/25)

= T .
oxr—1 ) 25 oxr—1

So




Long-term behavior: Suppose as z — 00, we have
f(x)—=0 and g(z) A 0.
Then for “large z", we have f(z) + g(x) =~ g(x).

Disguised example: Note that

3-22% [1/)x . 3/x—2r —0— o0
im ) = lim ——— = —00.
z—oo by —1 \ 1/x z—o00 H—1/x —5—-0
3—2z2

But what general shape does <=5 take for large 7

(Strategy: Put p(x)/q(x) into the sum of polynomials and rational functions

where each has deg(denominator) > deg(numerator), via long division. . . )

We have
3—22* 2 2 (73/25)

5—1 5 25 Br—1°
o) f(@)



Long-term behavior: Suppose as z — 00, we have
f(x)—=0 and g(z) A 0.
Then for “large z", we have f(z) + g(x) =~ g(x).

Disguised example: Note that

3-22% [1/)x . 3/x—2r —0— o0
im =) = - = —o0.
z—oo by —1 \ 1/x z—o00 H—1/x —5—-0
3—2z2

But what general shape does take for large 7

S5r—1
(Strategy: Put p(x)/q(x) into the sum of polynomials and rational functions

where each has deg(denominator) > deg(numerator), via long division. . . )

We have
3—22* 2 2 (73/25)

br—1 _5 25 bu—1°
——r ——
g(x) f(z)
And as x — +o00, we have f(z) — 0 and g(x) 4 0.



Long-term behavior: Suppose as z — 00, we have
f(x)—=0 and g(z) A 0.
Then for “large z", we have f(z) + g(x) =~ g(x).

Disguised example: Note that
3—22% (1/x\ _ .. 3/x—2¢ —0—cc
1/z) 2500 5—1/z —5—0

1m = —OQ.
z—o00 bxr — 1

3—2z2
S5xr—1

(Strategy: Put p(x)/q(x) into the sum of polynomials and rational functions

But what general shape does take for large 7

where each has deg(denominator) > deg(numerator), via long division. . . )

We have
3—22* 2 2 (73/25)

br—1 _5 25 br—1
—— N——
g(x) f(=)
And as x — +o00, we have f(z) — 0 and g(x) /4 0. So for large z,
3—22 2 2
Sz—1 5 25




We have
3—222 2 2 (73/25)

5 — 1 57795 Br—1 -
_— =

9(z) f(x)
And as x — +oo, we have f(z) — 0 and g(z) /4 0. So for large =,
3 — 222 2
R — - — —.
oxr —1 5 25

4

y=f(x) +g(x)




We have
3—222 2 2 (73/25)

br—1 _5 25 bu—1°
S—— N——
g(z) f(z)
And as x — +oo, we have f(z) — 0 and g(z) /4 0. So for large =,
3 — 222

S5r — 1

y=f(x) +g(x)

Of course, for x very close to 1/5, f(x) is much smaller than
g(x). So close to = 1/5, we have f(z)+ g(x) ~ f(z), and f(x)
becomes the dominant term.



Limits and graphing: Asymptotes

Horizontal: If f(x) — L as x — oo and/or as © — —o0, we say

y = f(z) has a horizontal asymptote y = L.
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Limits and graphing: Asymptotes

Horizontal: If f(x) — L as x — oo and/or as © — —o0, we say
y = f(z) has a horizontal asymptote y = L.

y=f(x)
y=i(x) y=ftx)

y=L y=L y=L

Vertical: If f(x) — +oo as © — ¢ and/or as z — ¢~, we say
y = f(z) has a vertical asymptote = = c.

N Al N

x=c v =f(x

I M y=f(x)




Limits and graphing: Asymptotes

Oblique or Slant line: If f(x) ~ max + b for large (positive and/or
negative) =, we say y = f(x) has an oblique (a.k.a. slant line)
asymptote y = mx + b.

y=f(x) /
%

o

y=mx+b

—







