Warmup.

Compute the following limits:

1.
$$
\lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4};
$$

2.
$$
\lim_{x \to 0} \frac{5x^3 + 8x^2}{3x^4 - 16x^2};
$$

3.
$$
\lim_{x \to 0} \frac{3 - \sqrt{9 - 2x}}{x}.
$$

Recall that a limit $\lim_{x\to a} f(x)$ exists whenever $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ exist and are equal. Let

$$
f(x) = \begin{cases} 1/x & \text{for } x < -1, \\ -x^2 & \text{for } -1 \le x < 2, \\ 2x + 1 & \text{for } x \le 2, \end{cases} \quad \text{and} \quad g(x) = \begin{cases} \sin(x) & \text{for } x < \pi/2, \\ A & \text{for } x = \pi/2, \\ 2x + B & \text{for } \pi/2 < x. \end{cases}
$$

4. For which C does
$$
\lim_{x \to C} f(x)
$$
 exist?

5. For which *A* and *B* does lim $x \rightarrow a$ $g(x)$ exist for all a ?

Sandwich theorem

Fix $a \leq c \leq b$. Suppose that $g(x) \leq f(x) \leq h(x)$ for all $a \leq x \leq b$ (except possibly for $x = c$). If

Sandwich theorem

Fix $a \le c \le b$. Suppose that $g(x) \le f(x) \le h(x)$ for all $a \le x \le b$ (except possibly for $x = c$). If

$$
\lim_{x \to c} g(x) = L = \lim_{x \to c} h(x),
$$

then $\lim_{x \to c} f(x) = L$.

Example: Compute lim $x\rightarrow 0$ $x^2 \sin(1/x)$.

Solution: Since

$$
-1 \le \sin(1/x) \le 1 \quad \text{for all } x,
$$

except at $x = 0$, where $\sin(1/x)$ is not defined. Then since $x^2 \ge 0$, we can multiply through by *x*² to get

$$
-x^{2} \leq x^{2} \sin(1/x) \leq x^{2} \quad \text{for all } x \neq 0.
$$

Further, $\lim_{x \to 0} -x^{2} = 0 = \lim_{x \to 0} x^{2}$. Thus $\lim_{x \to 0} x^{2} \sin(1/x) = 0$.

One important limits

Hypothesis:

 Ω $\left(\frac{1}{\sqrt{2}} \right)$ Γ)... $\mathsf{Area}(\Delta OAP) \leq \mathsf{Area}(\text{ wedge }OAP) \leq \mathsf{Area}(\Delta OAT) \ldots$

Thm. lim $x\rightarrow 0$ $sin(x)$ *x* $= 1$. Example. Compute lim $x\rightarrow 0$ $\frac{\cos(x)-1}{x}$ $\frac{1}{x^2}$. Solution. Recall $\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$ and $\cos^2(\theta) + \sin^2(\theta) = 1$. So considering $\theta = x/2$, we have $\cos(x) = \cos(2(x/2)) = \cos^2(x/2) - \sin^2(x/2)$ $= (1 - \sin^2(x/2)) - \sin^2(x/2) = 1 - 2\sin^2(x/2)$. So lim $x\rightarrow 0$ $\frac{\cos(x)-1}{x}$ $\frac{y}{x^2}$ = $\lim_{x\to 0}$ $\frac{-2\sin^2(x/2)}{2}$ $\frac{x^{2}}{x^{2}} = \overline{1}$ lim $2\theta \rightarrow 0$ $\sin(\theta)$ θ $\frac{1}{\sin \theta}$ $2\theta \rightarrow 0$ $\sin(\theta)$ θ ◆ Note as $x \to 0$, we have $\theta = x/2 \to 0$. So lim $\frac{\cos(x)-1}{x}$ $\frac{y}{x}$ = - $\sqrt{ }$ lim $\sin(\theta)$ \setminus^2 $= -(1)(1) = |-1|$.

 $\theta \rightarrow 0$

 θ

 $x\rightarrow 0$

.

Thm. lim $x\rightarrow 0$ $sin(x)$ *x* $= 1$. Example. Compute lim $x\rightarrow 0$ sin(2*x*) sin(3*x*) . Solution. We have lim $x\rightarrow 0$ sin(2*x*) $\frac{\sin(2x)}{\sin(3x)} = \lim_{x \to 0}$ sin(2*x*) $\frac{1}{\sin(3x)}$ *·* 3*x* $\overline{2x}$ [•] 2 3 $=\frac{2}{3}$ $\frac{2}{3} \cdot \lim_{x \to 0}$ $\frac{\sin(2x)/2x}{\sin(3x)/3x} = \frac{2}{3} \cdot \frac{\lim_{x\to 0} \sin(2x)/2x}{\lim_{x\to 0} \sin(3x)/3x}$ *.* As $x \to 0$, we have $2x \to 0$ and $3x \to 0$. Thus lim $x\rightarrow 0$ $\sin(2x)/2x = \lim$ $2x\rightarrow 0$ $\sin(2x)/2x = \lim$ $y\rightarrow 0$ $\sin(y)/y = |1|,$ and similarly $\lim_{x\to 0} \sin(3x)/3x = 1$. Thus lim $x\rightarrow 0$ $\frac{\sin(2x)}{\sin(3x)} = \frac{2}{3}$. 1 1 $= |2/3|$.

Thm.
$$
\lim_{x \to 0} \frac{\sin(x)}{x} = 1.
$$

\nExample. Compute
$$
\lim_{x \to 0} \frac{\sin(5x)}{x}.
$$

\nSolution. We have
\n
$$
\lim_{x \to 0} \frac{\sin(5x)}{x} = \lim_{x \to 0} \frac{\sin(5x)}{5x} \cdot 5 = 5 \lim_{x \to 0} \frac{\sin(5x)}{5x}.
$$

\nAgain, as $x \to 0$, we have $5x \to 0$. Thus
\n
$$
\lim_{x \to 0} \frac{\sin(5x)}{x} = 5 \lim_{x \to 0} \frac{\sin(5x)}{5x} = 5 \lim_{y \to 0} \frac{\sin(y)}{y} = 5 \cdot 1 = 5.
$$

Domain definitions

Definition

An interior point of *D* is any point in *D* which is not an endpoint or an isolated point.

> Ex. Everything in D except $x = 7$. Ex 2. Everything in *D* except $x = \frac{1}{2} \& 7$.

Continuity

Let *a* be an interior point or an endpoint of *D*.

Definition

A function is

- \blacktriangleright right-continuous at *a* if $\lim_{x \to a^+} f(x) = f(a)$;
- In left-continuous at *a* if $\lim_{x\to a^-} f(x) = f(a)$;
- \triangleright continuous at *a* if $\lim_{x\to a} f(x) = f(a)$.

If a is an interior point and $f(x)$ it is not continuous at a , then function is discontinuous at *a*.

Continuity

Let *a* be an interior point. We say $f(x)$ is continuous at *a* if $\lim_{x\to a} f(x) = f(a)$. Otherwise, $f(x)$ is discontinuous at a.

Checklist:

- 1. Does (a) $\lim_{x \to a^{-}} f(x)$ exist? (b) $\lim_{x \to a^{+}} f(x)$ exist?
- 2. Does lim $x \rightarrow a$ $f(x)$ exist? (i.e. does $(a) = (b)?$)
- 3. Does $f(a) = \lim$ $x \rightarrow a$ *f*(*x*)?

If the answer to any of $1.-3.$ is "no", then $f(x)$ is discontinuous at *a*.

Some examples:

Over their domains, all polynomials, rational functions, trigonometric functions, exponential functions, absolute values, and their inverses are all continuous functions. (Jumps all happen over domain gaps)

Example: Is the function
$$
f(x) = \begin{cases} x^2 & x < 1 \\ x^3 + 2 & 1 \le x \end{cases}
$$
 continuous?

Solution: The only possible problem would happen at $x = 1$. Let's check there:

$$
\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{2} = 1
$$
\n
$$
\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x^{3} + 2 = 3
$$

No , $f(x)$ is discontinuous at $x = 1$ because 1 is an interior point of the domain, but $\lim_{x\to 1} f(x)$ does not exist.

Some examples:

- \triangleright Sums, differences, and products of continuous functions are continuous.
- \blacktriangleright If $g(c) \neq 0$ and $f(x)$ and $g(x)$ are continuous at c , then so is $g(x)/f(x)$.
- ► If $f(x)$ is continuous at *c*, and $g(x)$ is continuous at $f(c)$, then $f(g(x))$ is continuous at *c*.

Right Continuity and Left Continuity

Definition

A function $f(x)$ is right continuous at a point a if it is defined on an interval $[a, b)$ and $\lim_{x \to a^+} f(x) = f(a)$.

Similarly, a function $f(x)$ is left continuous at a point a if it is defined on an interval $(b, a]$ and $\lim_{x \to a^-} f(x) = f(a)$.

Example:

 $f(x)$ is

- (a) continuous at every *interior* point in *D* except $x = 4$ and 5;
- (b) only right continuous at those points included in (a) ; and
- (c) additionally left continuous at $x = 4$ and $x = 7$.

Suppose a function *f* has no isolated points in its domain.

Definition

A function *f* is continuous over its domain *D* if (1) is is continuous at every interior point of D , and (2) it is left (or right) continuous at every endpoint of *D*. Otherwise, it has a discontinuity at each point in *D* which violates (1) or (2).

Filling and Fixing

Suppose *a* is a point of discontinuity in *D*

(a) If *a* is an interior point and $\lim_{x\to a} f(x) = L$ exists; or (b) if *a* is an endpoint and $\lim_{x\to a^{\pm}} f(x) = L$ exists, then we say $f(x)$ has a removable discontinuity:

Example: $f(x)$ has a removable discontinuity in exactly one place:

$$
\bar{f}(x) = \begin{cases} f(x) & x \neq 5 \\ 1/2 & x = 5 \end{cases}
$$

Filling and Fixing

Suppose *a* is a hole in *D* (*a* is arbitrarily close to points in *D*, but not in *D*).

(a) If *a* would be an interior point and $\lim_{x\to a} f(x) = L$ exists; or (b) if *a* would be an endpoint and $\lim_{x\to a^{\pm}} f(x) = L$ exists, then we say $f(x)$ has a continuous extension:

Example: $f(x)$ has continuous extensions in exactly two places:

$$
\bar{f}_1(x) = \begin{cases} f(x) & x \neq 1 \\ -1 & x = 1 \end{cases} \qquad \text{and} \qquad \bar{f}_2(x) = \begin{cases} f(x) & x \neq 2 \\ 1 & x = 2 \end{cases}
$$

Examples

- (A) Which of the following have removable discontinuities? For those which do, what are the alternate functions with those discontinuities removed?
- (B) Which of the following have continuous extensions? For those which do, what are those extensions?

1.
$$
f(x) = \frac{x^2 - 4}{x - 2}
$$

\n2. $f(x) = \begin{cases} \sin x & x \neq \pi/3 \\ 0 & x = \pi/3 \end{cases}$
\n3. $f(x) = \frac{|x|}{x}$

One application: The Intermediate Value Theorem

Suppose *f* is continuous on a closed interval [*a, b*].

If $f(a) < C < f(b)$ or $f(a) > C > f(b)$,

then there is at least one point c in the interval $[a, b]$ such that

Example 1: Show that the equation $x^5 - 3x + 1 = 0$ has at least one solution in the interval [0*,* 1].

Example 2: Show every polynomial

$$
p(x) = a_n x^n + \dots + a_1 x + a_0, \qquad a_n \neq 0
$$

of odd degree has at least one real root (a solution to $p(x)=0$).