
Warmup.

Compute the following limits:

1. lim
x→4

x2 − 2x− 8

x− 4
;

2. lim
x→0

5x3 + 8x2

3x4 − 16x2
;

3. lim
x→0

3−
√

9− 2x

x
.

Recall that a limit limx→a f(x) exists whenever limx→a+ f(x) and
limx→a− f(x) exist and are equal. Let

f(x) =


1/x for x < −1,

−x2 for − 1 ≤ x < 2,

2x+ 1 for x ≤ 2,

and g(x) =


sin(x) for x < π/2,

A for x = π/2,

2x+B for π/2 < x.

4. For which C does lim
x→C

f(x) exist?

5. For which A and B does lim
x→a

g(x) exist for all a?



Sandwich theorem

Fix a ≤ c ≤ b. Suppose that g(x) ≤ f(x) ≤ h(x) for all a ≤ x ≤ b
(except possibly for x = c). If

lim
x→c

g(x) = L = lim
x→c

h(x),

then limx→c f(x) = L.
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x→0

x2 sin(1/x).

Solution: Since

−1 ≤ sin(1/x) ≤ 1 for all x,

except at x = 0, where sin(1/x) is not defined. Then since x2 ≥ 0,
we can multiply through by x2 to get

−x2 ≤ x2 sin(1/x) ≤ x2 for all x 6= 0.

Further, lim
x→0
−x2 = 0 = lim

x→0
x2. Thus lim

x→0
x2 sin(1/x) = 0 .
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One important limits

Near x = 0, sin(x) ≈ x: Graph of sin(x)
x :
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Thm. lim
x→0

sin(x)

x
= 1

Proof. Consider 0 < θ < π/2.

Let the points O, A, P , and T be given as follows:

86 Chapter 2 Limits and Continuity

EXAMPLE 4  Show that y = sin (1>x) has no limit as x approaches zero from either 
side (Figure 2.31).

x

y

0

-1

1

y = sin 1
x

FIGURE 2.31 The function y = sin (1>x) has neither a right-
hand nor a left-hand limit as x approaches zero (Example 4). 
The graph here omits values very near the y-axis.

Solution As x approaches zero, its reciprocal, 1>x, grows without bound and the values 
of sin (1>x) cycle repeatedly from -1 to 1. There is no single number L that the function’s 
values stay increasingly close to as x approaches zero. This is true even if we restrict x to 
positive values or to negative values. The function has neither a right-hand limit nor a left-
hand limit at x = 0. 

Limits Involving (sin U) ,U
A central fact about (sin u)>u is that in radian measure its limit as u S 0 is 1. We can see 
this in Figure 2.32 and confirm it algebraically using the Sandwich Theorem. You will see the 
importance of this limit in Section 3.5, where instantaneous rates of change of the trigono-
metric functions are studied.

y

1

NOT TO SCALE

2pp-p-2p-3p 3p

y = (radians)sin u
u

u

FIGURE 2.32 The graph of ƒ(u) = (sin u)>u suggests that the right- 
and left-hand limits as u approaches 0 are both 1.

THEOREM 7—Limit of the Ratio sin U ,U as Uu 0

lim
uS0

 sin u
u

= 1  (u in radians) (1)

Proof  The plan is to show that the right-hand and left-hand limits are both 1. Then we 
will know that the two-sided limit is 1 as well.

To show that the right-hand limit is 1, we begin with positive values of u less than 
p>2 (Figure 2.33). Notice that

Area ∆OAP 6  area sector OAP 6  area ∆OAT.

x

y

O

1

1

Q

tan u

P

sin u 

cos u 

1

T

A(1, 0)

u

FIGURE 2.33 The ratio TA>OA = tan u, 
and OA = 1, so TA = tan u.
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Then

Area(∆OAP ) ≤ Area( wedge OAP ) ≤ Area(∆OAT ). . .
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Thm. lim
x→0

sin(x)

x
= 1.

Example. Compute lim
x→0

cos(x)− 1

x2
.

Solution. Recall

cos(2θ) = cos2(θ)− sin2(θ) and cos2(θ) + sin2(θ) = 1.

So considering θ = x/2, we have

cos(x) = cos(2(x/2)) = cos2(x/2)− sin2(x/2)

= (1− sin2(x/2))− sin2(x/2) = 1− 2 sin2(x/2).

So

lim
x→0

cos(x)− 1

x2
= lim

x→0

−2 sin2(x/2)

x2
= −

(
lim
2θ→0

sin(θ)

θ

)(
lim
2θ→0

sin(θ)

θ

)
.

Note as x→ 0, we have θ = x/2→ 0. So

lim
x→0

cos(x)− 1

x
= −

(
lim
θ→0

sin(θ)

θ

)2

= −(1)(1) = −1 .
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3

=
2

3
· lim
x→0

sin(2x)/2x

sin(3x)/3x
=

2

3
· limx→0 sin(2x)/2x

limx→0 sin(3x)/3x
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As x→ 0, we have 2x→ 0 and 3x→ 0. Thus

lim
x→0

sin(2x)/2x = lim
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y→0

sin(y)/y = 1 ,
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sin(2x)

sin(3x)
=

2

3
· 1

1
= 2/3 .
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Warm-up
Suppose the graph of y = f(x) looks like

0 1 2 3 4 5 6 7

-1

1

2

3
answers to 4.:
a x→ a− x→ a+

1 DNE -1

4 2 1

6 1.5 2

7 3 DNE

1. What is the domain of f(x)?

(1, 2) ∪ (2, 6) ∪ (6, 7]

2. What is the range of f(x)?

(−1, 3]

3. For which values a in [1, 7] does lim
x→a

f(x) not exist?

a = 1, 4, 6, 7

4. For those values you picked out in 3., what are

(see above)

lim
x→a−

f(x) and lim
x→a+

f(x)?

5. Which values a satisfy

a = 5

f(a) and lim
x→a

f(x) exist, but f(a) 6= lim
x→a

f(x)?
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Domain definitions

0 1 2 3 4 5 6 7

-1

1

2

3

Let D be the domain of f(x). Ex. D = (1, 2) ∪ (2, 6) ∪ (6, 7]

Ex 2. D = {12} ∪ (1, 2) ∪ (2, 6) ∪ (6, 7]

Definition
An interior point of D is any point in D which is not an endpoint
or an isolated point.

Ex. Everything in D except x = 7.

Ex 2. Everything in D except x = 1
2 & 7.
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Continuity

Let a be an interior point or an endpoint of D.

0 1 2 3 4 5 6 7

-1

1
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3

Ex. f(x) is discontinuous
at x = 4 and 5.
No other points are fair game!

Definition
A function is

I right-continuous at a if limx→a+ f(x) = f(a);

I left-continuous at a if limx→a− f(x) = f(a);

I continuous at a if limx→a f(x) = f(a).

If a is an interior point and f(x) it is not continuous at a, then
function is discontinuous at a.
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Continuity

0 1 2 3 4 5 6 7

-1

1

2

3

Ex. f(x) is discontinuous

at x = 4 and 5.

No other points are fair game!

Let a be an interior point. We say f(x) is continuous at a if
limx→a f(x) = f(a). Otherwise, f(x) is discontinuous at a.

Checklist:

1. Does (a) lim
x→a−

f(x) exist? (b) lim
x→a+

f(x) exist?

2. Does lim
x→a

f(x) exist? (i.e. does (a) = (b)?)

3. Does f(a) = lim
x→a

f(x)?

If the answer to any of 1.–3. is “no”, then f(x) is discontinuous at
a.



Some examples:
Over their domains, all

polynomials, rational functions, trigonometric functions,
exponential functions, absolute values,

and their inverses are all continuous functions.
(Jumps all happen over domain gaps)

Example: Is the function f(x) =

{
x2 x < 1

x3 + 2 1 ≤ x
continuous?

Solution: The only possible problem would happen at x = 1. Let’s check
there:

lim
x→1−

f(x) = lim
x→1−

x2

= 1

lim
x→1+

f(x) = lim
x→1+

x3 + 2

= 3
-2 2

3

6

9

No , f(x) is discontinuous at x = 1 because 1 is an interior point of the
domain, but limx→1 f(x) does not exist.
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Some examples:
Over their domains, all

polynomials, rational functions, trigonometric functions,
exponential functions, absolute values,

and their inverses are all continuous functions.
(Jumps all happen over domain gaps)

I Sums, differences, and products of continuous functions are
continuous.

I If g(c) 6= 0 and f(x) and g(x) are continuous at c, then so is
g(x)/f(x).

I If f(x) is continuous at c, and g(x) is continuous at f(c),
then f(g(x)) is continuous at c.

2.5  Continuity 95

We defined the exponential function y = ax in Section 1.5 informally. The graph was 
obtained from the graph of y = ax for x a rational number by “filling in the holes” at the 
irrational points x, so as to make the function y = ax continuous over the entire real line. 
The inverse function y = loga x is also continuous. In particular, the natural exponential 
function y = ex and the natural logarithm function y = ln x are both continuous over their 
domains. Proofs of continuity for these functions will be given in Chapter 7.

Continuity of Compositions of Functions

Functions obtained by composing continuous functions are continuous. If ƒ(x) is continu-
ous at x = c and g(x) is continuous at x = ƒ(c), then g ∘ ƒ is also continuous at x = c
(Figure 2.42). In this case, the limit of g ∘ ƒ as x S c is g(ƒ(c)).

c

f g

 g ˚ f

Continuous at c

Continuous
at f (c)

Continuous
at c

f (c)  g( f (c))

FIGURE 2.42 Compositions of continuous functions are continuous.

THEOREM 9—Compositions of Continuous Functions
If ƒ is continuous at c and g is continuous at ƒ(c), then the composition g ∘ ƒ is 
continuous at c.

Intuitively, Theorem 9 is reasonable because if x is close to c, then ƒ(x) is close to ƒ(c), 
and since g is continuous at ƒ(c), it follows that g(ƒ(x)) is close to g(ƒ(c)).

The continuity of compositions holds for any finite number of compositions of func-
tions. The only requirement is that each function be continuous where it is applied. An 
outline of a proof of Theorem 9 is given in Exercise 6 in Appendix 4.

EXAMPLE 8  Show that the following functions are continuous on their natural 
domains.

(a) y = 2x2 - 2x - 5 (b) y = x2>3
1 + x4

(c) y = ` x - 2
x2 - 2

`  (d) y = ` x sin x
x2 + 2

`
Solution
(a) The square root function is continuous on 30, q) because it is a root of the continu-

ous identity function ƒ(x) = x (Part 7, Theorem 8). The given function is then the 
composition of the polynomial ƒ(x) = x2 - 2x - 5 with the square root function 
g(t) = 2t , and is continuous on its natural domain.

(b) The numerator is the cube root of the identity function squared; the denominator is an 
everywhere-positive polynomial. Therefore, the quotient is continuous.

(c) The quotient (x - 2)>(x2 - 2) is continuous for all x ≠ {22, and the function 
is the composition of this quotient with the continuous absolute value function 
(Example 7).
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Right Continuity and Left Continuity

Definition
A function f(x) is right continuous at a point a if it is defined on
an interval [a, b) and limx→a+ f(x) = f(a).
Similarly, a function f(x) is left continuous at a point a if it is
defined on an interval (b, a] and limx→a− f(x) = f(a).

Example:

0 1 2 3 4 5 6 7

-1

1

2

3

f(x) is

(a) continuous at every interior point in D except x = 4 and 5;

(b) only right continuous at those points included in (a); and

(c) additionally left continuous at x = 4 and x = 7.
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Suppose a function f has no isolated points in its domain.

Definition
A function f is continuous over its domain D if (1) is is continuous at
every interior point of D, and (2) it is left (or right) continuous at every
endpoint of D. Otherwise, it has a discontinuity at each point in D
which violates (1) or (2).

Is a an interior 
point of D?

Is a an 
endpoint of D?

Does the limit exist from the 
right of a? from the left of a?

Are they equal?

Is the two-sided 
limit equal to f(a)?

f(x) is continuous 
at x=a

f(x) is discontinuous 
at x=a

Is a in the 
domain D?

Is f(x) left (or right) continuous 
(as appropriate)?

no

no

no

no

no

yes

yes

yes

yes

yes

yes

yespick again

Pick a 
number a

no



Filling and Fixing
Suppose a is a point of discontinuity in D

(a) If a is an interior point and limx→a f(x) = L exists; or

(b) if a is an endpoint and limx→a± f(x) = L exists,

then we say f(x) has a removable discontinuity:

f̄(x) =

{
f(x) x 6= a

L x = a
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3

Example: f(x) has a removable discontinuity in exactly one place:

f̄(x) =

{
f(x) x 6= 5

1/2 x = 5
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Filling and Fixing
Suppose a is a hole in D (a is arbitrarily close to points in D, but not in D).

(a) If a would be an interior point and limx→a f(x) = L exists; or

(b) if a would be an endpoint and limx→a± f(x) = L exists,

then we say f(x) has a continuous extension:

f̄(x) =

{
f(x) x 6= a

L x = a

0 1 2 3 4 5 6 7
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Example: f(x) has continuous extensions in exactly two places:

f̄1(x) =

{
f(x) x 6= 1

−1 x = 1
and f̄2(x) =

{
f(x) x 6= 2

1 x = 2
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Examples

(A) Which of the following have removable discontinuities? For
those which do, what are the alternate functions with those
discontinuities removed?

(B) Which of the following have continuous extensions? For those
which do, what are those extensions?

1. f(x) =
x2 − 4

x− 2

Cont. extension: f̄(x) =

{
f(x) x 6= 2

4 x = 2

2. f(x) =

{
sinx x 6= π/3

0 x = π/3

Removable disc.: f̄(x) = sin(x)

3. f(x) =
|x|
x

No continuous extension.
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One application: The Intermediate Value Theorem
Suppose f is continuous on a closed interval [a, b].

If f(a) < C < f(b) or f(a) > C > f(b),

then there is at least one point c in the interval [a, b] such that

f(c) = C.

a b

C

c a b

C

a b

C

Example 1: Show that the equation x5 − 3x+ 1 = 0 has at least
one solution in the interval [0, 1].
Example 2: Show every polynomial

p(x) = anx
n + · · ·+ a1x+ a0, an 6= 0

of odd degree has at least one real root (a solution to p(x) = 0).
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Our favorite application: Rates of change!

It only makes sense to study the rate of change of a function where
that function is continuous (or maybe where the function has a
continuous extension)!
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