The Legacy of Galileo, Newton, and Leibniz


Galileo (1564-1642): Experiment, then draw conclusions.
Newton (1642-1727): Invented/used calculus to explain motion
Gottfried Wilhelm Leibniz (1646-1716) independently co-invented calculus, taking a slightly different point of view ("infinitesimal calculus") but also studied rates of change in a general setting.


Drop a ball from the top of a building...

At time $t$, how far has the ball fallen? Measure it!


| time $(\mathrm{s})$ | distance $(\mathrm{m})$ |
| :---: | :---: |
| 0.10 | 0.049 |
| 0.20 | 0.196 |
| 0.30 | 0.441 |
| 0.40 | 0.784 |
| 0.50 | 1.225 |
| 0.60 | 1.764 |
| 0.70 | 2.401 |
| 0.80 | 3.136 |
| 0.90 | 3.969 |
| 1.00 | 4.900 |



How fast is the ball falling at time $t$ ? A little trickier...

## Average Speed

## Definition

The average velocity from $t=t_{1}$ to $t=t_{2}$ is
avg velocity $=\frac{\text { change in distance }}{\text { change in time }}$
$=$ slope of secant line


Plot position $f$ versus time $t$ :

$$
y=f(t)
$$



Pick two points on the curve $(a, f(a))$ and $(b, f(b))$. Rewrite $b=a+h$. Slope of the line connecting them:

$$
\text { avg velocity }=m=\frac{f(a+h)-f(a)}{h} \quad \text { "difference quotient" }
$$

Plot position $f$ versus time $t$ :

$$
y=f(t)
$$



Pick two points on the curve $(a, f(a))$ and $(b, f(b))$. Rewrite $b=a+h$. Slope of the line connecting them:

$$
\text { avg velocity }=m=\frac{f(a+h)-f(a)}{h} \quad \text { "difference quotient" }
$$

The smaller $h$ is, the more useful $m$ is!

## Goal: Rates of change in general

Think: $f(x)$ is
distance versus time $x$, or profit versus production volume $x$, or birthrate versus population $x$, or...

## Definition

Given a function $f$, the average rate of change of $f$ over an interval $[x, x+h]$ is

$$
\frac{f(x+h)-f(x)}{h} .
$$

The average rate of change is also what we have called the difference quotient over the interval.

## Definition

The instantaneous rate of change of a function at a point $x$ is the limit of the average rates of change over intervals $[x, x+h]$ as $h \rightarrow 0$.

## Future goals:

1. Get good at limits.
2. Explore instantaneous rates of change further, as limits of difference quotients.
3. Explore the geometric meaning of the definition of instantaneous rate of change at a point.
4. Apply the definition to each of the elementary functions to see if there are formula-like rules for calculating the instantaneous rate of change.
5. Use the definition of instantaneous rate of change and its consequences to obtain explicit functions for the position, velocity, and acceleration of a falling object.

## Limit of a Function - Definition

We say that a function $f$ approaches the limit $L$ as $x$ approaches $a$,

$$
\text { written } \quad \lim _{x \rightarrow a} f(x)=L \text {, }
$$

if we can make $f(x)$ as close to $L$ as we want by taking $x$ sufficiently close to $a$.

i.e. If you need $\Delta y$ to be smaller, you only need to make $\Delta x$ smaller
( $\Delta$ means "change")

## One-sided limits



Right-handed limit: $L_{r}=\lim _{x \rightarrow a^{+}} f(x)$
if $f(x)$ gets closer to $L_{r}$ as $x$ gets closer to $a$ from the right
Left-handed limit: $L_{\ell}=\lim _{x \rightarrow a^{-}} f(x)$
if $f(x)$ gets closer to $L_{\ell}$ as $x$ gets closer to $a$ from the left

## Theorem

The limit of $f$ as $x \rightarrow a$ exists if and only if both the right-hand and left-hand limits exist and have the same value, i.e.

$$
\lim _{x \rightarrow a} f(x)=L \text { if and only if } \lim _{x \rightarrow a^{-}} f(x)=L \text { and } \lim _{x \rightarrow a^{+}} f(x)=L .
$$

## Examples

$$
\lim _{x \rightarrow 2} \frac{x-2}{x+3} \quad \lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}
$$

## Compute

(a) $\lim _{x \rightarrow 2^{-}} g(x)$
(b) $\lim _{x \rightarrow 2^{+}} g(x)$
(c) $\lim _{x \rightarrow 2} g(x)$
(d) $\lim _{x \rightarrow 5^{-}} g(x)$
(e) $\lim _{x \rightarrow 5^{+}} g(x)$
(f) $\lim _{x \rightarrow 5} g(x)$
for the following function:


## Theorem

If $\lim _{x \rightarrow a} f(x)=A$ and $\lim _{x \rightarrow a} g(x)=B$ both exist, then

1. $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=A+B$
2. $\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)=A-B$
3. $\lim _{x \rightarrow a}(f(x) g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=A \cdot B$
4. If $B \neq 0$, then
$\lim _{x \rightarrow a}(f(x) / g(x))=\lim _{x \rightarrow a} f(x) / \lim _{x \rightarrow a} g(x)=A / B$.
In short: to take a limit
Step 1: Can you just plug in? If so, do it.
Step 2: If not, is there some sort of algebraic manipulation (like cancellation) that can be done to fix the problem? If so, do it. Then plug in.
Step 3: Learn some special limit to fix common problems. (Later)
If in doubt, graph it!

## Examples

1. $\lim _{x \rightarrow 2} \frac{x-2}{x+3}=0$ because if $f(x)=\frac{x-2}{x+3}$, then $f(2)=0$.
2. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1} \rightarrow 0$

If $f(x)=\frac{x^{2}-1}{x-1}$, then $f(x)$ is undefined at $x=1$.
However, so long as $x \neq 1$,

$$
f(x)=\frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1}=x+1 .
$$

So

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} x+1=1+1=2 .
$$

3. $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} \rightarrow 0$, so again, $f(x)$ is undefined at $a$.

## Examples

3. $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} \rightarrow 0$, so again, $f(x)$ is undefined at $a$.

Multiply top and bottom by the conjugate:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} & =\lim _{x \rightarrow 0}\left(\frac{\sqrt{x+2}-\sqrt{2}}{x}\right)\left(\frac{\sqrt{x+2}+\sqrt{2}}{\sqrt{x+2}+\sqrt{2}}\right) \\
& =\lim _{x \rightarrow 0} \frac{x+2-2}{x(\sqrt{x+2}+\sqrt{2})} \quad \text { since }(a-b)(a+b)=a^{2}-b^{2} \\
& =\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+2}+\sqrt{2})} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+2}+\sqrt{2}}=\frac{1}{2 \sqrt{2}}
\end{aligned}
$$

## You try:

1. $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}+4 x-5}$
2. $\lim _{x \rightarrow-2} \frac{|x|}{x}$
3. $\lim _{x \rightarrow 0} \frac{|x|}{x}$
4. $\lim _{x \rightarrow 0} \frac{(3+x)^{2}-3^{2}}{x}$

## Badly behaved example:


$\lim _{x \rightarrow 0^{+}} \csc (1 / x)$ does not exist, and $\lim _{x \rightarrow 0^{-}} \csc (1 / x)$ does not exist

