Inverse functions and logarithms

Recall that a function is a machine that takes a number from one set and puts a number of another set. Must be well-defined, meaning the function is decisive: (1) always has an answer and (2) always puts out one answer for each number taken in. Examples:

1. $f : \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x^2$; e.g.

2. $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ defined by $x \mapsto |\sqrt{x}|$; e.g.

$\frac{1}{\downarrow}$	4 ↓	$\int_{1}^{\pi^2}$	1/9 Ţ	etc.
1	2	π	1/3	

Note that \sqrt{x} is only a function when we go to extra effort to decide that we're always going to choose the positive answer.

t	N(t) = pop. at time t
(hours)	
0	100
1	168
2	259
3	258
4	445
5	509

3. Let bacteria grow, and measure population over time. Consider $N : \mathbb{N} \to \mathbb{N}$ by N(t) = # bacteria at time t.

Now suppose we we're trying to ask the question "how long will it take to grow at least 500 bacteria?"

Answer: between 4 and 5 hours

Inverse functions

Given a function f, the inverse function f^{-1} is the machine that takes in f's output, and returns the corresponding input.

$$x \stackrel{f}{\longmapsto} f(x) \stackrel{f^{-1}}{\longmapsto} x$$

In notation, we write that

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$.

Example: If $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by

$$f(x) = x^2$$
, then $f^{-1}(x) = |\sqrt{x}| = \sqrt{x}$.

Non-Example: If $f : \mathbb{R} \to \mathbb{R}_{\geq 0}$ is given by

 $f(x) = x^2$, then $f^{-1}(x)$ is not well-defined.

If $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by

If $f:\mathbb{R} \to \mathbb{R}_{\geq 0}$ is given by

When is a function invertible?

A function *f* is one-to-one if no two inputs give the same output, that is, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$. Example: over all real numbers, $f(x) = x^2$ is not one-to-one. However, over non-negative real numbers, $f(x) = x^2$ is one-to-one.

Horizontal line test: A function is one-to-one if and only if no horizontal line intersects the function's graph more than once. Answer: A function is invertible if and only if it is one-to-one.

Graphing inverses

For a one-to-one function f, we have

and

the range of f is the domain of f^{-1} .

You try:

- For each of the following functions, (a) give the domain and range of f, and (b) decide if f is invertible.
- If f is invertible, then (c) sketch a graph of f⁻¹, (d) give the domain and range of f⁻¹, and (e) try to write a formula for f⁻¹.
- If f is not invertible over all of the real numbers, what is a restricted domain over which f is invertible? Over that restricted domain, do (c) and (d) from above.

Calculating the inverse function algebraically

Given an invertible f, solve for f^{-1} by setting f(y) = x, and solving for $y = f^{-1}(x)$. Example: Let f(x) = 1/(x+2). Set

$$x = f(y) = 1/(y+2).$$

Then

$$y + 2 = 1/x$$
, so that $f^{-1}(x) = y = (1/x) - 2$.

Example: Let $f(x) = x^3 + 2$. (Check: is it invertible??) Set

$$x = f(y) = y^3 + 2.$$

Then

$$y^3 = x - 2$$
, so that $f^{-1}(x) = y = (x - 2)^{1/3}$

Checking your answer algebraically

Recall that f^{-1} is defined by

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$

Example: We calculated that if f(x) = 1/(x+2), then $f^{-1}(x) = (1/x) - 2$. Let's check!

$$f(f^{-1}(x)) = \frac{1}{(1/x) - 2 + 2}$$

= $\frac{1}{(1/x)} = x \checkmark$

and

$$f^{-1}(f(x)) = (1/1/(x+2)) - 2$$

= x + 2 - 2 = x \checkmark

You try:

- 1. Check that if $f(x) = x^3 + 2$ then $f^{-1}(x) = (x 2)^{1/3}$ by calculating $f(f^{-1}(x))$ and $f^{-1}(f(x))$.
- 2. For the following functions, calculate $f^{-1}(x)$ and verify your answer as above. (a) f(x) = 3/(x-1) (b) $f(x) = 5\sqrt{x-2}$

Logarithms

The exponential function a^x has inverse $\log_a(x)$, i.e.

$$\log_a(a^x) = x = a^{\log_a(x)}, \quad \text{i.e.}$$

$$y = a^x$$
 if and only if $\log_a(y) = x$.

Properties of Logarithms

Domain: $(0,\infty)$ i.e. all x > 0 Range: $(-\infty,\infty)$ i.e. all x

Properties of Logarithms

0 < *a* < 1:

Domain: $(0, \infty)$ i.e. all x > 0

Range: $(-\infty,\infty)$ i.e. all x

Properties of Logarithms

Since...

we know...

1.
$$a^0 = 1$$
1. $\log_a(1) = 0$ 2. $a^1 = a$ 2. $\log_a(a) = 1$ 3. $a^b * a^c = a^{b+c}$ 3. $\log_a(b * c) = \log_a(b) + \log_a(c)$ 4. $(a^b)^c = a^{b*c}$ 4. $\log_a(b^c) = c \log_a(b)$

Example: why $\log_a(b * c) = \log_a(b) + \log_a(c)$: Suppose $y = \log_a(b) + \log_a(c)$.

Then $a^{y} = a^{\log_{a}(b) + \log_{a}(c)} = a^{\log_{a}(b)}a^{\log_{a}(c)} = b * c$.

So $y = \log_a(b * c)$ as well!

Lastly:
$$\frac{\log_a(b)}{\log_a(c)} = \log_c(b)$$

Favorite logarithmic function

Remember: $y = e^x$ is the function whose slope through the point (0,1) is 1.

The *inverse* to $y = e^x$ is the *natural log*:

We will often use the facts that $e^{\ln(x)} = x$ (for x > 0) and $\ln(e^x) = x$ (for all x)

Two super useful facts:

Explain why: (1) $\log_a(b) = \ln(b) / \ln(a)$

(2) $a^b = e^{b \ln(a)}$ [hint: start by rewriting $b \ln(a)$, and use the fact that $e^{\ln(x)} = x$]

Examples:

(1) Condense the logarithmic expressions

$$\frac{1}{2}\ln(x) + 3\ln(x+1) \qquad 2\ln(x+5) - \ln(x) \qquad \frac{1}{3}(\log_3(x) - \log_3(x+1))$$

(2) Solve the following expressions for x:

$$e^{-x^2} = e^{-3x-4}$$
 $3(2^x) = 24$

$$2(e^{3x-5}) - 5 = 11 \qquad \ln(3x+1) - \ln(5) = \ln(2x)$$

Inverse trig functions

Two notations:

f(x)	$f^{-1}(x)$
sin(x)	$\sin^{-1}(x) = \arcsin(x)$
$\cos(x)$	$\cos^{-1}(x) = \arccos(x)$
tan(x)	$ an^{-1}(x) = \arctan(x)$
sec(x)	$\sec^{-1}(x) = \arccos(x)$
$\csc(x)$	$\csc^{-1}(x) = \arccos(x)$
$\cot(x)$	$\cot^{-1}(x) = \operatorname{arccot}(x)$

There are lots of points we know on these functions... Examples:

1. Since
$$\sin(\pi/2) = 1$$
, we have $\arcsin(1) = \pi/2$

2. Since
$$\cos(\pi/2) = 0$$
, we have $\arccos(0) = \pi/2$

Etc...

In general:

arc___(-) takes in a ratio and spits out an angle:

Domain problems:

sin(0) = 0, $sin(\pi) = 0$, $sin(2\pi) = 0$, $sin(3\pi) = 0$,... So which is the right answer to arcsin(0), really?

Graphs

