## Inverse functions and logarithms

Recall that a function is a machine that takes a number from one set and puts a number of another set. Must be well-defined, meaning the function is decisive: (1) always has an answer and (2) always puts out one answer for each number taken in.

## Examples:

1. $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto x^{2}$; e.g.

| 1 | -2 | $-\pi$ | $1 / 3$ | etc. |
| :---: | :---: | :---: | :---: | :---: |
| $I$ | $I$ | $I$ | $I$ |  |
| 1 | 4 | $\pi^{2}$ | $1 / 9$ |  |

2. $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ defined by $x \mapsto|\sqrt{x}|$; e.g.

| 1 | 4 | $\pi^{2}$ | $1 / 9$ | etc. |
| :---: | :---: | :---: | :---: | :---: |
| $I$ | $I$ | $I$ | $I$ |  |
| 1 | 2 | $\pi$ | $1 / 3$ |  |

Note that $\sqrt{x}$ is only a function when we go to extra effort to decide that we're always going to choose the positive answer.
3. Let bacteria grow, and measure population over time.

Consider $N: \mathbb{N} \rightarrow \mathbb{N}$ by $N(t)=\#$ bacteria at time $t$.

| $t$ <br> (hours) | $N(t)=$ pop. at time $t$ |
| :---: | :---: |
| 0 | 100 |
| 1 | 168 |
| 2 | 259 |
| 3 | 258 |
| 4 | 445 |
| 5 | 509 |

Now suppose we we're trying to ask the question "how long will it take to grow at least 500 bacteria?"
Answer: between 4 and 5 hours

## Inverse functions

Given a function $f$, the inverse function $f^{-1}$ is the machine that takes in $f$ 's output, and returns the corresponding input.

$$
x \stackrel{f}{\longmapsto} f(x) \stackrel{f^{-1}}{\longmapsto} x
$$

In notation, we write that

$$
f^{-1}(f(x))=x \quad \text { and } \quad f\left(f^{-1}(x)\right)=x .
$$

Example: If $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is given by

$$
f(x)=x^{2}, \quad \text { then } \quad f^{-1}(x)=|\sqrt{x}|=\sqrt{x} .
$$

Non-Example: If $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ is given by

$$
f(x)=x^{2}, \quad \text { then } \quad f^{-1}(x) \text { is not well-defined. }
$$

If $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is given by

$$
f(x)=x^{2}, \quad \text { then } \quad f^{-1}(x)=|\sqrt{x}| .
$$



If $y=x^{2}$ and $x \geq 0$, then $x=|\sqrt{y}|$.

If $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ is given by

$$
f(x)=x^{2}, \quad \text { then } \quad|\sqrt{x}| \text { is not the inverse. }
$$



If $y=x^{2}$ and $x<0$, then $x \neq|\sqrt{y}|$ !

A function $f$ is one-to-one if no two inputs give the same output, that is, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Example: over all real numbers, $f(x)=x^{2}$ is not one-to-one.
However, over non-negative real numbers, $f(x)=x^{2}$ is one-to-one.


Horizontal line test: A function is one-to-one if and only if no horizontal line intersects the function's graph more than once.
Answer: A function is invertible if and only if it is one-to-one.

## Graphing inverses

For a one-to-one function $f$, we have

$$
f(x)=y \quad \text { if and only if } \quad x=f^{-1}(y)
$$



The graph of $y=f^{-1}(x)$ is the reflection of the graph of $f$ over the line $y=x$ (i.e. swap the axes). Further, the domain of $f$ is the range of $f^{-1}$,
and the range of $f$ is the domain of $f^{-1}$.

- For each of the following functions, (a) give the domain and range of $f$, and (b) decide if $f$ is invertible.
- If $f$ is invertible, then (c) sketch a graph of $f^{-1}$, (d) give the domain and range of $f^{-1}$, and (e) try to write a formula for $f^{-1}$.
- If $f$ is not invertible over all of the real numbers, what is a restricted domain over which $f$ is invertible? Over that restricted domain, do (c) and (d) from above.

(2) $f(x)=x^{5}$
(3) $f(x)=\cos (x)$
(4) $f(x)=1 /(x+2)$




## Calculating the inverse function algebraically

Given an invertible $f$, solve for $f^{-1}$ by setting $f(y)=x$, and solving for $y=f^{-1}(x)$.
Example: Let $f(x)=1 /(x+2)$.
Set

$$
x=f(y)=1 /(y+2)
$$

Then

$$
y+2=1 / x, \quad \text { so that } f^{-1}(x)=y=(1 / x)-2 .
$$

Example: Let $f(x)=x^{3}+2$. (Check: is it invertible??)
Set

$$
x=f(y)=y^{3}+2
$$

Then

$$
y^{3}=x-2, \quad \text { so that } f^{-1}(x)=y=(x-2)^{1 / 3} .
$$

Checking your answer algebraically
Recall that $f^{-1}$ is defined by

$$
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x .
$$

Example: We calculated that if $f(x)=1 /(x+2)$, then $f^{-1}(x)=(1 / x)-2$. Let's check!

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =1 /((1 / x)-2+2) \\
& =1 /(1 / x)=x \quad
\end{aligned}
$$

and

$$
\begin{aligned}
f^{-1}(f(x)) & =(1 / 1 /(x+2))-2 \\
& =x+2-2=x
\end{aligned}
$$

You try:

1. Check that if $f(x)=x^{3}+2$ then $f^{-1}(x)=(x-2)^{1 / 3}$ by calculating $f\left(f^{-1}(x)\right)$ and $f^{-1}(f(x))$.
2. For the following functions, calculate $f^{-1}(x)$ and verify your answer as above. (a) $f(x)=3 /(x-1) \quad$ (b) $f(x)=5 \sqrt{x-2}$

## Logarithms

The exponential function $a^{x}$ has inverse $\log _{a}(x)$, i.e.

$$
\begin{gathered}
\log _{a}\left(a^{x}\right)=x=a^{\log _{a}(x)} \text {, i.e. } \\
y=a^{x} \quad \text { if and only if } \quad \log _{a}(y)=x .
\end{gathered}
$$



Properties of Logarithms


Domain: $(0, \infty)$ i.e. all $x>0$
Range: $(-\infty, \infty)$ i.e. all $x$

## Properties of Logarithms

$$
0<a<1 \text { : }
$$




Domain: $(0, \infty)$ i.e. all $x>0$
Range: $(-\infty, \infty)$ i.e. all $x$

## Properties of Logarithms

Since... we know...

$$
\text { 1. } a^{0}=1
$$

1. $\log _{a}(1)=0$
2. $a^{1}=a$
3. $\log _{a}(a)=1$
4. $a^{b} * a^{c}=a^{b+c}$
5. $\log _{a}(b * c)=$

$$
\log _{a}(b)+\log _{a}(c)
$$

4. $\left(a^{b}\right)^{c}=a^{b * c}$
5. $\log _{a}\left(b^{c}\right)=c \log _{a}(b)$

Example: why $\log _{a}(b * c)=\log _{a}(b)+\log _{a}(c)$ :
Suppose $y=\log _{a}(b)+\log _{a}(c)$.
Then $a^{y}=a^{\log _{a}(b)+\log _{a}(c)}=a^{\log _{a}(b)} a^{\log _{a}(c)}=b * c$.
So $y=\log _{a}(b * c)$ as well!

$$
\text { Lastly: } \frac{\log _{a}(b)}{\log _{a}(c)}=\log _{c}(b)
$$

## Favorite logarithmic function

Remember: $y=e^{x}$ is the function whose slope through the point $(0,1)$ is 1 .
The inverse to $y=e^{x}$ is the natural log:

$$
\ln (x)=\log _{e}(x)
$$



We will often use the facts that $e^{\ln (x)}=x$ (for $x>0$ ) and $\ln \left(e^{x}\right)=x$ (for all $\left.x\right)$

Two super useful facts:
Explain why:
(1) $\log _{a}(b)=\ln (b) / \ln (a)$
(2) $a^{b}=e^{b \ln (a)}$ [hint: start by rewriting $b \ln (a)$, and use the fact that $e^{\ln (x)}=x$ ]

## Examples:

(1) Condense the logarithmic expressions

$$
\frac{1}{2} \ln (x)+3 \ln (x+1) \quad 2 \ln (x+5)-\ln (x) \quad \frac{1}{3}\left(\log _{3}(x)-\log _{3}(x+1)\right)
$$

(2) Solve the following expressions for $x$ :

$$
e^{-x^{2}}=e^{-3 x-4} \quad 3\left(2^{x}\right)=24
$$

$$
2\left(e^{3 x-5}\right)-5=11 \quad \ln (3 x+1)-\ln (5)=\ln (2 x)
$$

## Inverse trig functions

Two notations:

$$
\begin{array}{cc}
f(x) & f^{-1}(x) \\
\hline \sin (x) & \sin ^{-1}(x)=\arcsin (x) \\
\cos (x) & \cos ^{-1}(x)=\arccos (x) \\
\tan (x) & \tan ^{-1}(x)=\arctan (x) \\
\sec (x) & \sec ^{-1}(x)=\operatorname{arcsec}(x) \\
\csc (x) & \csc ^{-1}(x)=\operatorname{arccsc}(x) \\
\cot (x) & \cot ^{-1}(x)=\operatorname{arccot}(x)
\end{array}
$$

There are lots of points we know on these functions...

## Examples:

1. Since $\sin (\pi / 2)=1$, we have $\arcsin (1)=\pi / 2$
2. Since $\cos (\pi / 2)=0$, we have $\arccos (0)=\pi / 2$

Etc...

In general:
$\operatorname{arc} \quad(-)$ takes in a ratio and spits out an angle:


$$
\begin{array}{lll}
\cos (\theta)=a / c & \text { so } & \arccos (a / c)=\theta \\
\sin (\theta)=b / c & \text { so } & \arcsin (b / c)=\theta \\
\tan (\theta)=b / a & \text { so } & \arctan (b / a)=\theta
\end{array}
$$

## Domain problems:

$\sin (0)=0, \quad \sin (\pi)=0, \quad \sin (2 \pi)=0, \quad \sin (3 \pi)=0, \ldots$
So which is the right answer to arcsin(0), really?

## Graphs








