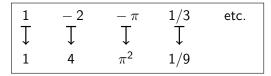
Inverse functions and logarithms

Recall that a function is a machine that takes a number from one set and puts a number of another set.

Recall that a function is a machine that takes a number from one set and puts a number of another set. Must be well-defined, meaning the function is decisive: (1) always has an answer and (2) always puts out one answer for each number taken in.

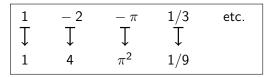
Recall that a function is a machine that takes a number from one set and puts a number of another set. Must be well-defined, meaning the function is decisive: (1) always has an answer and (2) always puts out one answer for each number taken in. Examples:

1. $f : \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x^2$; e.g.

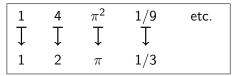


Recall that a function is a machine that takes a number from one set and puts a number of another set. Must be well-defined, meaning the function is decisive: (1) always has an answer and (2) always puts out one answer for each number taken in. Examples:

1. $f : \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x^2$; e.g.

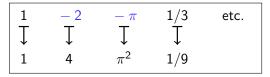


2. $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ defined by $x \mapsto |\sqrt{x}|$; e.g.



Recall that a function is a machine that takes a number from one set and puts a number of another set. Must be well-defined, meaning the function is decisive: (1) always has an answer and (2) always puts out one answer for each number taken in. Examples:

1. $f : \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x^2$; e.g.



2. $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ defined by $x \mapsto |\sqrt{x}|$; e.g.

1	4	π^2	1/9	etc.
Ţ	Ţ	1	Ţ	
1	2	π	1/3	

Note that \sqrt{x} is only a function when we go to extra effort to decide that we're always going to choose the positive answer.

3. Let bacteria grow, and measure population over time. Consider $N : \mathbb{N} \to \mathbb{N}$ by N(t) = # bacteria at time t.

t	N(t) = pop. at time t
(hours)	
0	100
1	168
2	259
3	258
4	445
5	509

3. Let bacteria grow, and measure population over time. Consider $N : \mathbb{N} \to \mathbb{N}$ by N(t) = # bacteria at time t.

t	N(t) = pop. at time t
(hours)	
0	100
1	168
2	259
3	258
4	445
5	509

Now suppose we we're trying to ask the question "how long will it take to grow at least 500 bacteria?"

3. Let bacteria grow, and measure population over time. Consider $N : \mathbb{N} \to \mathbb{N}$ by N(t) = # bacteria at time t.

t	N(t) = pop. at time t
(hours)	
0	100
1	168
2	259
3	258
4	445
5	509

Now suppose we we're trying to ask the question "how long will it take to grow at least 500 bacteria?"

Answer: between 4 and 5 hours

Given a function f, the inverse function f^{-1} is the machine that takes in f's output, and returns the corresponding input.

$$x \xrightarrow{f} f(x) \xrightarrow{f^{-1}} x$$

Given a function f, the inverse function f^{-1} is the machine that takes in f's output, and returns the corresponding input.

$$x \xrightarrow{f} f(x) \xrightarrow{f^{-1}} x$$

In notation, we write that

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$.

Given a function f, the inverse function f^{-1} is the machine that takes in f's output, and returns the corresponding input.

$$x \xrightarrow{f} f(x) \xrightarrow{f^{-1}} x$$

In notation, we write that

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$.

Example: If $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by

$$f(x) = x^2$$
, then $f^{-1}(x) = |\sqrt{x}| = \sqrt{x}$.

Given a function f, the inverse function f^{-1} is the machine that takes in f's output, and returns the corresponding input.

$$x \xrightarrow{f} f(x) \xrightarrow{f^{-1}} x$$

In notation, we write that

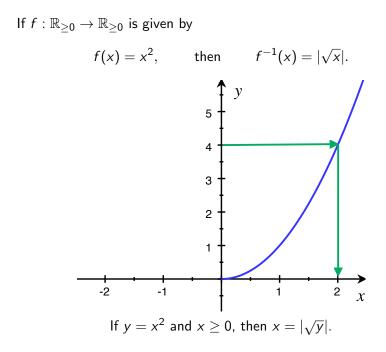
$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$.

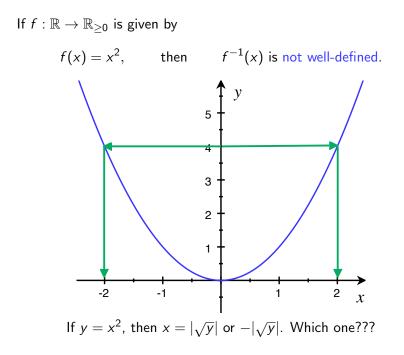
Example: If $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by

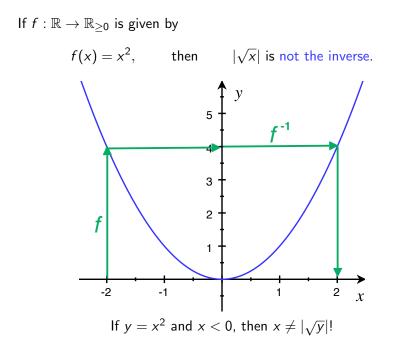
$$f(x) = x^2$$
, then $f^{-1}(x) = |\sqrt{x}| = \sqrt{x}$.

Non-Example: If $f : \mathbb{R} \to \mathbb{R}_{\geq 0}$ is given by

$$f(x) = x^2$$
, then $f^{-1}(x)$ is not well-defined.



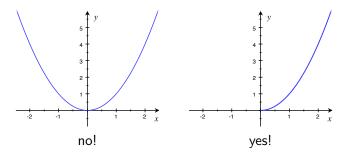




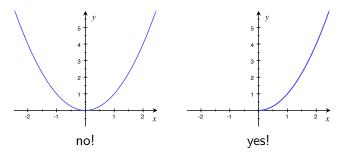
A function f is one-to-one if no two inputs give the same output, that is, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.

A function f is one-to-one if no two inputs give the same output, that is, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$. Example: over all real numbers, $f(x) = x^2$ is not one-to-one. However, over non-negative real numbers, $f(x) = x^2$ is one-to-one.

A function f is one-to-one if no two inputs give the same output, that is, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$. Example: over all real numbers, $f(x) = x^2$ is not one-to-one. However, over non-negative real numbers, $f(x) = x^2$ is one-to-one.

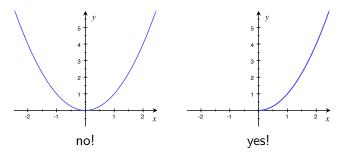


A function f is one-to-one if no two inputs give the same output, that is, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$. Example: over all real numbers, $f(x) = x^2$ is not one-to-one. However, over non-negative real numbers, $f(x) = x^2$ is one-to-one.



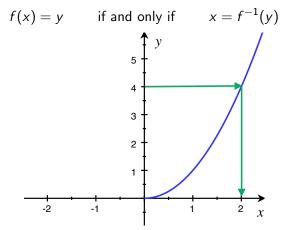
Horizontal line test: A function is one-to-one if and only if no horizontal line intersects the function's graph more than once.

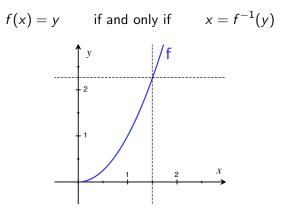
A function f is one-to-one if no two inputs give the same output, that is, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$. Example: over all real numbers, $f(x) = x^2$ is not one-to-one. However, over non-negative real numbers, $f(x) = x^2$ is one-to-one.

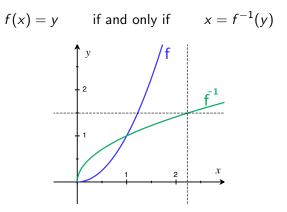


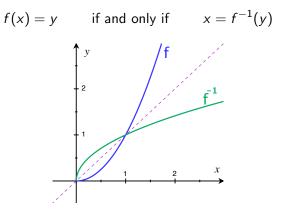
Horizontal line test: A function is one-to-one if and only if no horizontal line intersects the function's graph more than once. Answer: A function is invertible if and only if it is one-to-one.

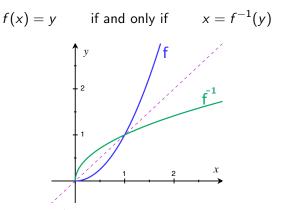
$$f(x) = y$$
 if and only if $x = f^{-1}(y)$





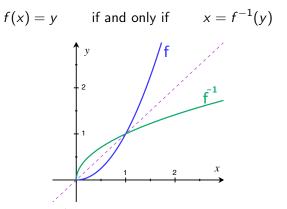






The graph of $y = f^{-1}(x)$ is the reflection of the graph of f over the line y = x (i.e. swap the axes).

For a one-to-one function f, we have



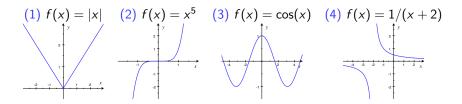
The graph of $y = f^{-1}(x)$ is the reflection of the graph of f over the line y = x (i.e. swap the axes). Further, the domain of f is the range of f^{-1} ,

and

the range of f is the domain of f^{-1} .

You try:

- For each of the following functions, (a) give the domain and range of f, and (b) decide if f is invertible.
- If f is invertible, then (c) sketch a graph of f⁻¹, (d) give the domain and range of f⁻¹, and (e) try to write a formula for f⁻¹.
- If f is not invertible over all of the real numbers, what is a restricted domain over which f is invertible? Over that restricted domain, do (c) and (d) from above.



Given an invertible f, solve for f^{-1} by setting f(y) = x, and solving for $y = f^{-1}(x)$.

Given an invertible f, solve for f^{-1} by setting f(y) = x, and solving for $y = f^{-1}(x)$. Example: Let f(x) = 1/(x+2).

Given an invertible f, solve for f^{-1} by setting f(y) = x, and solving for $y = f^{-1}(x)$. Example: Let f(x) = 1/(x+2). Set

$$x = f(y) = 1/(y+2).$$

Given an invertible f, solve for f^{-1} by setting f(y) = x, and solving for $y = f^{-1}(x)$. Example: Let f(x) = 1/(x+2). Set

$$x = f(y) = 1/(y+2).$$

Then

y+2=1/x,

Given an invertible f, solve for f^{-1} by setting f(y) = x, and solving for $y = f^{-1}(x)$. Example: Let f(x) = 1/(x+2). Set

$$x = f(y) = 1/(y+2).$$

Then

$$y + 2 = 1/x$$
, so that $f^{-1}(x) = y = (1/x) - 2$

Given an invertible f, solve for f^{-1} by setting f(y) = x, and solving for $y = f^{-1}(x)$. Example: Let f(x) = 1/(x+2). Set

$$x = f(y) = 1/(y+2).$$

Then

$$y + 2 = 1/x$$
, so that $f^{-1}(x) = y = (1/x) - 2$

Example: Let $f(x) = x^3 + 2$. (Check: is it invertible??)

Given an invertible f, solve for f^{-1} by setting f(y) = x, and solving for $y = f^{-1}(x)$. Example: Let f(x) = 1/(x+2). Set

$$x = f(y) = 1/(y+2).$$

Then

$$y + 2 = 1/x$$
, so that $f^{-1}(x) = y = (1/x) - 2$

Example: Let $f(x) = x^3 + 2$. (Check: is it invertible??) Set

$$x=f(y)=y^3+2.$$

Calculating the inverse function algebraically

Given an invertible f, solve for f^{-1} by setting f(y) = x, and solving for $y = f^{-1}(x)$. Example: Let f(x) = 1/(x+2). Set

$$x = f(y) = 1/(y+2).$$

Then

$$y + 2 = 1/x$$
, so that $f^{-1}(x) = y = (1/x) - 2$

Example: Let $f(x) = x^3 + 2$. (Check: is it invertible??) Set

$$x=f(y)=y^3+2.$$

Then

$$y^3 = x - 2,$$

Calculating the inverse function algebraically

Given an invertible f, solve for f^{-1} by setting f(y) = x, and solving for $y = f^{-1}(x)$. Example: Let f(x) = 1/(x+2). Set

$$x = f(y) = 1/(y+2).$$

Then

$$y + 2 = 1/x$$
, so that $f^{-1}(x) = y = (1/x) - 2$

Example: Let $f(x) = x^3 + 2$. (Check: is it invertible??) Set

$$x=f(y)=y^3+2.$$

Then

$$y^3 = x - 2$$
, so that $f^{-1}(x) = y = (x - 2)^{1/3}$.

Recall that f^{-1} is defined by

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$.

Recall that f^{-1} is defined by

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$.

Example: We calculated that if f(x) = 1/(x+2), then $f^{-1}(x) = (1/x) - 2$. Let's check!

Recall that f^{-1} is defined by

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$.

Example: We calculated that if f(x) = 1/(x+2), then $f^{-1}(x) = (1/x) - 2$. Let's check!

$$f(f^{-1}(x)) = 1/((1/x) - 2 + 2)$$

Recall that f^{-1} is defined by

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$.

Example: We calculated that if f(x) = 1/(x+2), then $f^{-1}(x) = (1/x) - 2$. Let's check!

$$f(f^{-1}(x)) = 1/((1/x) - 2 + 2)$$

= 1/(1/x) = x \checkmark

Recall that f^{-1} is defined by

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$.

Example: We calculated that if f(x) = 1/(x+2), then $f^{-1}(x) = (1/x) - 2$. Let's check!

$$f(f^{-1}(x)) = 1/((1/x) - 2 + 2)$$

= 1/(1/x) = x \checkmark

and

$$f^{-1}(f(x))$$

Recall that f^{-1} is defined by

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$.

Example: We calculated that if f(x) = 1/(x+2), then $f^{-1}(x) = (1/x) - 2$. Let's check!

$$f(f^{-1}(x)) = 1/((1/x) - 2 + 2)$$

= 1/(1/x) = x \checkmark

and

$$f^{-1}(f(x)) = (1/1/(x+2)) - 2$$

Recall that f^{-1} is defined by

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$.

Example: We calculated that if f(x) = 1/(x+2), then $f^{-1}(x) = (1/x) - 2$. Let's check!

$$f(f^{-1}(x)) = 1/((1/x) - 2 + 2)$$

= 1/(1/x) = x \checkmark

and

$$f^{-1}(f(x)) = (1/1/(x+2)) - 2$$

= $x + 2 - 2 = x \checkmark$

Recall that f^{-1} is defined by

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$.

Example: We calculated that if f(x) = 1/(x+2), then $f^{-1}(x) = (1/x) - 2$. Let's check!

$$f(f^{-1}(x)) = 1/((1/x) - 2 + 2) = 1/(1/x) = x \checkmark$$

and

$$f^{-1}(f(x)) = (1/1/(x+2)) - 2$$

= $x + 2 - 2 = x \checkmark$

You try:

- 1. Check that if $f(x) = x^3 + 2$ then $f^{-1}(x) = (x 2)^{1/3}$ by calculating $f(f^{-1}(x))$ and $f^{-1}(f(x))$.
- 2. For the following functions, calculate $f^{-1}(x)$ and verify your answer as above. (a) f(x) = 3/(x-1) (b) $f(x) = 5\sqrt{x-2}$

The exponential function a^x has inverse $\log_a(x)$

The exponential function a^x has inverse $\log_a(x)$, i.e.

$$\log_a(a^x) = x = a^{\log_a(x)}$$

The exponential function a^x has inverse $\log_a(x)$, i.e.

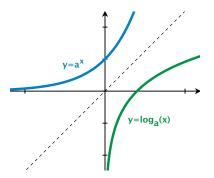
$$\log_a(a^x) = x = a^{\log_a(x)}, \quad \text{i.e.}$$

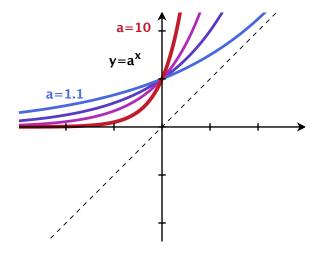
$$y = a^x$$
 if and only if $\log_a(y) = x$.

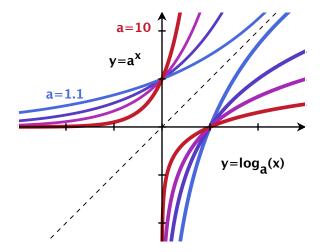
The exponential function a^x has inverse $\log_a(x)$, i.e.

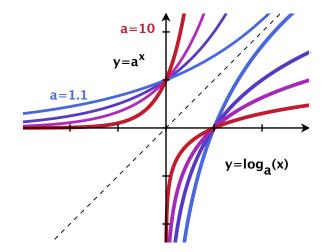
$$\log_a(a^x) = x = a^{\log_a(x)}, \quad \text{i.e}$$

$$y = a^x$$
 if and only if $\log_a(y) = x$.



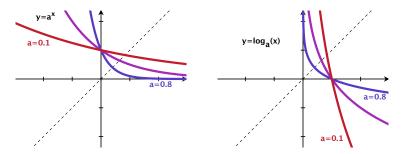






Domain: $(0,\infty)$ i.e. all x > 0

Range: $(-\infty,\infty)$ i.e. all x



Domain: $(0, \infty)$ i.e. all x > 0 Rar

Range: $(-\infty,\infty)$ i.e. all x

Since...

we know...

Since...

1.
$$a^0 = 1$$

we know...

1.
$$\log_a(1) = 0$$

Since...

1.
$$a^0 = 1$$

2. $a^1 = a$

we know...

1.
$$\log_a(1) = 0$$

2. $\log_a(a) = 1$

Since...

1.
$$a^0 = 1$$

2. $a^1 = a$
3. $a^b * a^c = a^{b+c}$

we know...

1. $\log_a(1) = 0$

$$2. \log_a(a) = 1$$

3. $\log_a(b * c) =$ $\log_a(b) + \log_a(c)$

Since...

1.
$$a^{0} = 1$$

2. $a^{1} = a$
3. $a^{b} * a^{c} = a^{b+c}$

we know...

1.
$$\log_a(1) = 0$$

2.
$$\log_a(a) = 1$$

3.
$$\log_a(b * c) =$$

 $\log_a(b) + \log_a(c)$

Example: why $\log_a(b * c) = \log_a(b) + \log_a(c)$: Suppose $y = \log_a(b) + \log_a(c)$.

Since...

1.
$$a^{0} = 1$$

2. $a^{1} = a$
3. $a^{b} * a^{c} = a^{b+c}$

we know...

1.
$$\log_a(1) = 0$$

2.
$$\log_a(a) = 1$$

3.
$$\log_a(b * c) =$$

 $\log_a(b) + \log_a(c)$

Example: why $\log_a(b * c) = \log_a(b) + \log_a(c)$: Suppose $y = \log_a(b) + \log_a(c)$.

Then $a^y = a^{\log_a(b) + \log_a(c)}$

Since...

1.
$$a^{0} = 1$$

2. $a^{1} = a$
3. $a^{b} * a^{c} = a^{b+c}$

we know...

1.
$$\log_a(1) = 0$$

2.
$$\log_a(a) = 1$$

3.
$$\log_a(b * c) =$$

 $\log_a(b) + \log_a(c)$

Example: why $\log_a(b * c) = \log_a(b) + \log_a(c)$: Suppose $y = \log_a(b) + \log_a(c)$.

Then $a^{y} = a^{\log_{a}(b) + \log_{a}(c)} = a^{\log_{a}(b)}a^{\log_{a}(c)}$

Since...

1.
$$a^{0} = 1$$

2. $a^{1} = a$
3. $a^{b} * a^{c} = a^{b+c}$

we know...

1.
$$\log_a(1) = 0$$

2.
$$\log_a(a) = 1$$

3.
$$\log_a(b * c) =$$

 $\log_a(b) + \log_a(c)$

Example: why $\log_a(b * c) = \log_a(b) + \log_a(c)$: Suppose $y = \log_a(b) + \log_a(c)$. Then $a^y = a^{\log_a(b) + \log_a(c)} = a^{\log_a(b)} a^{\log_a(c)} = b * c$.

Since...

1.
$$a^{0} = 1$$

2. $a^{1} = a$
3. $a^{b} * a^{c} = a^{b+c}$

we know...

1.
$$\log_a(1) = 0$$

2.
$$\log_a(a) = 1$$

3.
$$\log_a(b * c) =$$

 $\log_a(b) + \log_a(c)$

Example: why $\log_a(b * c) = \log_a(b) + \log_a(c)$: Suppose $y = \log_a(b) + \log_a(c)$. Then $a^y = a^{\log_a(b) + \log_a(c)} = a^{\log_a(b)}a^{\log_a(c)} = b * c$. So $y = \log_a(b * c)$ as well!

Since...

we know...

1.
$$a^0 = 1$$
 1. $\log_a(1) = 0$

 2. $a^1 = a$
 2. $\log_a(a) = 1$

 3. $a^b * a^c = a^{b+c}$
 3. $\log_a(b * c) = \log_a(b) + \log_a(c)$

 4. $(a^b)^c = a^{b*c}$
 4. $\log_a(b^c) = c \log_a(b)$

Example: why $\log_a(b * c) = \log_a(b) + \log_a(c)$: Suppose $y = \log_a(b) + \log_a(c)$.

Then $a^{y} = a^{\log_{a}(b) + \log_{a}(c)} = a^{\log_{a}(b)}a^{\log_{a}(c)} = b * c$.

So $y = \log_a(b * c)$ as well!

Since...

we know...

1.
$$a^0 = 1$$
 1. $\log_a(1) = 0$

 2. $a^1 = a$
 2. $\log_a(a) = 1$

 3. $a^b * a^c = a^{b+c}$
 3. $\log_a(b * c) = \log_a(b) + \log_a(c)$

 4. $(a^b)^c = a^{b*c}$
 4. $\log_a(b^c) = c \log_a(b)$

Example: why $\log_a(b * c) = \log_a(b) + \log_a(c)$: Suppose $y = \log_a(b) + \log_a(c)$.

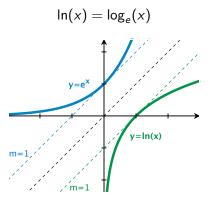
Then $a^{y} = a^{\log_{a}(b) + \log_{a}(c)} = a^{\log_{a}(b)} a^{\log_{a}(c)} = b * c$.

So $y = \log_a(b * c)$ as well!

Lastly:
$$\frac{\log_a(b)}{\log_a(c)} = \log_c(b)$$

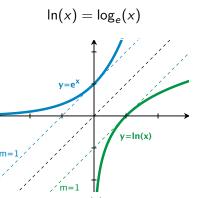
Favorite logarithmic function

Remember: $y = e^x$ is the function whose slope through the point (0,1) is 1. The inverse to $y = e^x$ is the natural log:



Favorite logarithmic function

Remember: $y = e^x$ is the function whose slope through the point (0,1) is 1. The inverse to $y = e^x$ is the natural log:



We will often use the facts that $e^{\ln(x)} = x$ (for x > 0) and $\ln(e^x) = x$ (for all x)

Two super useful facts:

Explain why: (1) $\log_a(b) = \ln(b) / \ln(a)$

(2) $a^b = e^{b \ln(a)}$ [hint: start by rewriting $b \ln(a)$, and use the fact that $e^{\ln(x)} = x$]

Two super useful facts:

Explain why: (1) $\log_a(b) = \ln(b) / \ln(a)$

Since $\ln(b) = \log_e(b)$ and $\ln(a) = \log_e(a)$, we have

$$\frac{\ln(b)}{\ln(a)} = \frac{\log_e(b)}{\log_e(a)} = \log_a(b)$$

(2) $a^b = e^{b \ln(a)}$ [hint: start by rewriting $b \ln(a)$, and use the fact that $e^{\ln(x)} = x$]

Since $b \ln(a) = \ln(a^b)$ and $e^{\ln(x)} = x$, we have

 $e^{b\ln(a)} = e^{\ln(a^b)} = a^b$

Examples:

(1) Condense the logarithmic expressions $\frac{1}{2}\ln(x)+3\ln(x+1) \qquad 2\ln(x+5)-\ln(x) \qquad \frac{1}{3}(\log_3(x)-\log_3(x+1))$

(2) Solve the following expressions for x:

$$e^{-x^2} = e^{-3x-4}$$
 $3(2^x) = 24$

 $2(e^{3x-5}) - 5 = 11$ $\ln(3x+1) - \ln(5) = \ln(2x)$

Examples:

(1) Condense the logarithmic expressions

$$\frac{1}{2}\ln(x)+3\ln(x+1) \qquad 2\ln(x+5)-\ln(x) \qquad \frac{1}{3}(\log_3(x)-\log_3(x+1))$$

$$\ln\left(\frac{(x+5)^2}{x}\right)$$

$$\log_3\left(\left(\frac{x}{x+1}\right)^{1/3}\right)$$

(2) Solve the following expressions for x:

 $\ln(\sqrt{x}(x+1)^3)$

$$e^{-x^2} = e^{-3x-4}$$
 $3(2^x) = 24$
 $x = -1, 4$ $x = 3$

 $2(e^{3x-5}) - 5 = 11$ $\ln(3x+1) - \ln(5) = \ln(2x)$

$$x = \frac{\ln(8) + 5}{3}$$

$$x = \frac{1}{7}$$

Inverse trig functions

Two notations:

$$\begin{array}{ccc} f(x) & f^{-1}(x) \\ \hline sin(x) & sin^{-1}(x) = \arcsin(x) \\ cos(x) & cos^{-1}(x) = \arccos(x) \\ tan(x) & tan^{-1}(x) = \arctan(x) \\ sec(x) & sec^{-1}(x) = \arccos(x) \\ csc(x) & csc^{-1}(x) = \arccos(x) \\ cot(x) & cot^{-1}(x) = \arccos(x) \end{array}$$

Inverse trig functions

Two notations:

$$\begin{array}{ccc} f(x) & f^{-1}(x) \\ \hline \sin(x) & \sin^{-1}(x) = \arcsin(x) \\ \cos(x) & \cos^{-1}(x) = \arccos(x) \\ \tan(x) & \tan^{-1}(x) = \arctan(x) \\ \sec(x) & \sec^{-1}(x) = \arctan(x) \\ \sec(x) & \sec^{-1}(x) = \arccos(x) \\ \csc(x) & \csc^{-1}(x) = \arccos(x) \\ \cot(x) & \cot^{-1}(x) = \arccos(x) \end{array}$$

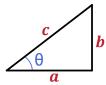
There are lots of points we know on these functions...

Examples:

1. Since
$$\sin(\pi/2) = 1$$
, we have $\arcsin(1) = \pi/2$

2. Since $\cos(\pi/2) = 0$, we have $\arccos(0) = \pi/2$ Etc... In general:

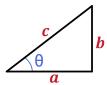
 $arc_{(-)}$ takes in a ratio and spits out an angle:



$\cos(heta) = a/c$	SO	$\arccos(a/c) = \theta$
$\sin(heta) = b/c$	SO	$\arcsin(b/c) = heta$
an(heta)=b/a	SO	$\arctan(b/a) = heta$

In general:

arc__(-) takes in a ratio and spits out an angle:

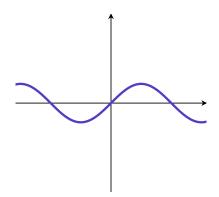


$\cos(heta) = a/c$	SO	$\arccos(a/c) = heta$
$\sin(heta) = b/c$	SO	$\arcsin(b/c) = heta$
an(heta)=b/a	SO	$\arctan(b/a) = heta$

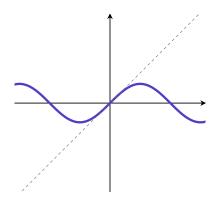
Domain problems:

 $\sin(0) = 0,$ $\sin(\pi) = 0,$ $\sin(2\pi) = 0,$ $\sin(3\pi) = 0,...$

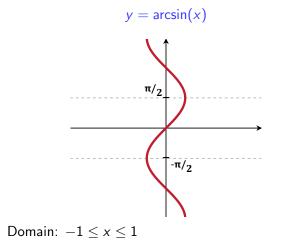
So which is the right answer to $\arcsin(0)$, really?

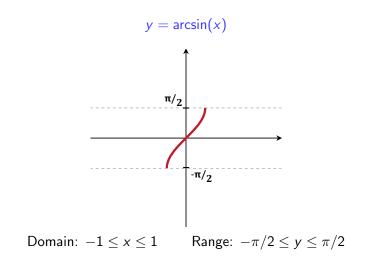


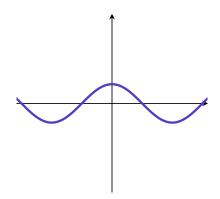
 $y = \sin(x)$



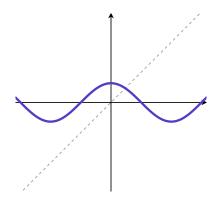


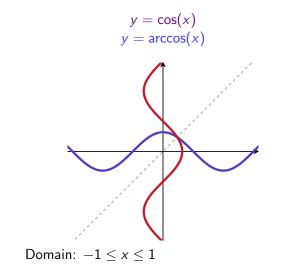


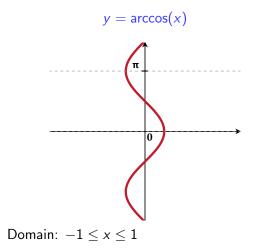


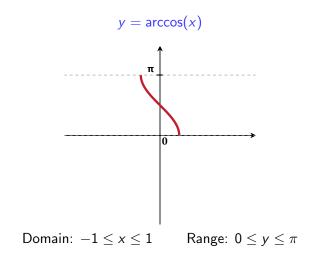


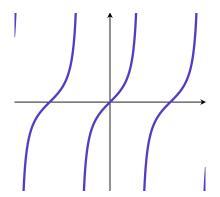
 $y = \cos(x)$

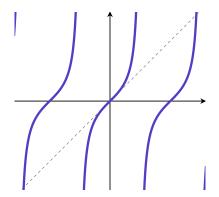


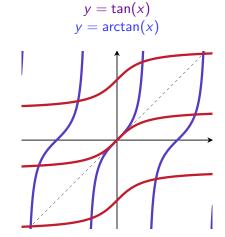




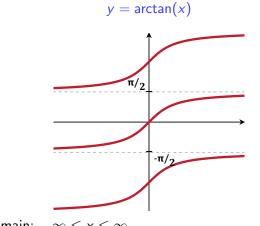




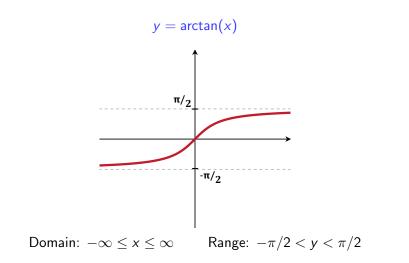


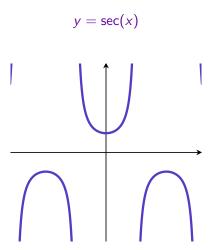


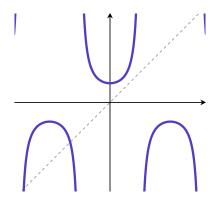
Domain: $-\infty \le x \le \infty$

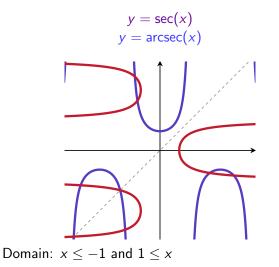


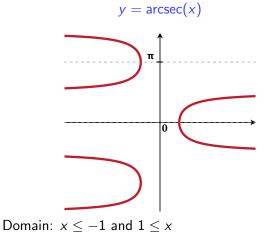
Domain: $-\infty \le x \le \infty$

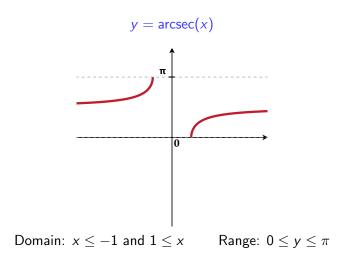


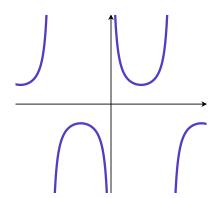


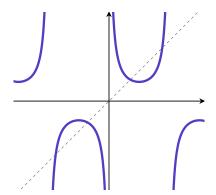


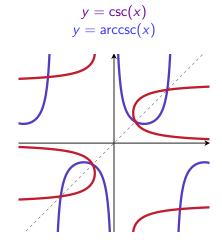




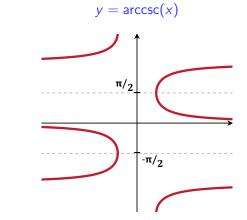




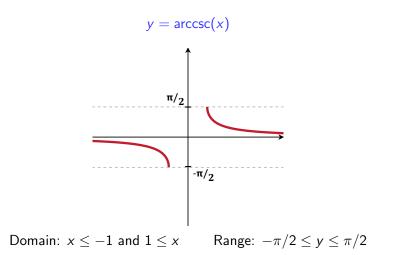


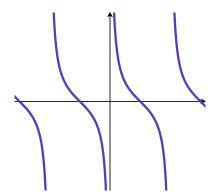


Domain: $x \leq -1$ and $1 \leq x$

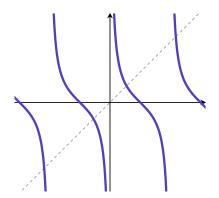


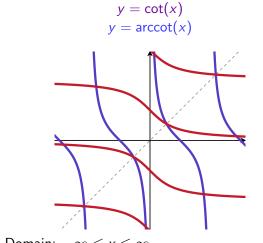
Domain: $x \leq -1$ and $1 \leq x$



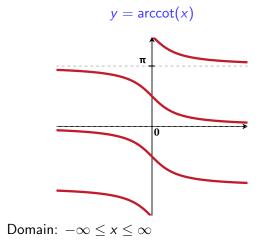


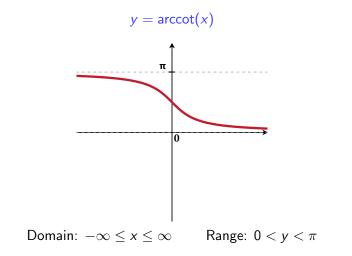
 $y = \cot(x)$





Domain: $-\infty \le x \le \infty$





Graphs

