
Inverse functions and logarithms



Recall that a function is a machine that takes a number from one
set and puts a number of another set.

Must be well-defined,
meaning the function is decisive: (1) always has an answer and (2)
always puts out one answer for each number taken in.
Examples:

1. f : R→ R defined by x 7→ x2; e.g.

1 − 2 − π 1/3 etc.

1 4 π2 1/9

2. f : R≥0 → R≥0 defined by x 7→ |
√
x |; e.g.

1 4 π2 1/9 etc.

1 2 π 1/3

Note that
√
x is only a function when we go to extra effort to

decide that we’re always going to choose the positive answer.
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3. Let bacteria grow, and measure population over time.
Consider N : N→ N by N(t) = # bacteria at time t.

t N(t) = pop. at time t
(hours)

0 100
1 168
2 259
3 258
4 445
5 509

Now suppose we we’re trying to ask the question “how long will it
take to grow at least 500 bacteria?’’

Answer: between 4 and 5 hours
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Inverse functions

Given a function f , the inverse function f −1 is the machine that
takes in f ’s output, and returns the corresponding input.

x
f7−−→ f (x)

f −1

7−−−→ x

In notation, we write that

f −1(f (x)) = x and f (f −1(x)) = x .

Example: If f : R≥0 → R≥0 is given by

f (x) = x2, then f −1(x) = |
√
x | =

√
x .

Non-Example: If f : R→ R≥0 is given by

f (x) = x2, then f −1(x) is not well-defined.
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If f : R≥0 → R≥0 is given by

f (x) = x2, then f −1(x) = |
√
x |.
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If y = x2 and x ≥ 0, then x = |√y |.



If f : R→ R≥0 is given by

f (x) = x2, then f −1(x) is not well-defined.
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If y = x2, then x = |√y | or −|√y |. Which one???



If f : R→ R≥0 is given by

f (x) = x2, then |
√
x | is not the inverse.
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If y = x2 and x < 0, then x 6= |√y |!



When is a function invertible?

A function f is one-to-one if no two inputs give the same output,
that is, if x1 6= x2, then f (x1) 6= f (x2).

Example: over all real numbers, f (x) = x2 is not one-to-one.
However, over non-negative real numbers, f (x) = x2 is one-to-one.
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yes!

Horizontal line test: A function is one-to-one if and only if no
horizontal line intersects the function’s graph more than once.
Answer: A function is invertible if and only if it is one-to-one.
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Graphing inverses
For a one-to-one function f , we have

f (x) = y if and only if x = f −1(y)
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The graph of y = f −1(x) is the reflection of the graph of f over
the line y = x (i.e. swap the axes). Further,

the domain of f is the range of f −1,
and

the range of f is the domain of f −1.
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You try:

I For each of the following functions, (a) give the domain and
range of f , and (b) decide if f is invertible.

I If f is invertible, then (c) sketch a graph of f −1, (d) give the
domain and range of f −1, and (e) try to write a formula for
f −1.

I If f is not invertible over all of the real numbers, what is a
restricted domain over which f is invertible? Over that
restricted domain, do (c) and (d) from above.

(1) f (x) = |x | (2) f (x) = x5 (3) f (x) = cos(x) (4) f (x) = 1/(x + 2)
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Calculating the inverse function algebraically
Given an invertible f , solve for f −1 by setting f (y) = x , and
solving for y = f −1(x).

Example: Let f (x) = 1/(x + 2).
Set

x = f (y) = 1/(y + 2).

Then

y + 2 = 1/x , so that f −1(x) = y = (1/x)− 2 .

Example: Let f (x) = x3 + 2. (Check: is it invertible??)
Set

x = f (y) = y3 + 2.

Then

y3 = x − 2, so that f −1(x) = y = (x − 2)1/3 .
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Checking your answer algebraically
Recall that f −1 is defined by

f (f −1(x)) = x and f −1(f (x)) = x .

Example: We calculated that if f (x) = 1/(x + 2), then
f −1(x) = (1/x)− 2. Let’s check!

f (f −1(x))

= 1/((1/x)− 2 + 2)

= 1/(1/x) = x X

and
f −1(f (x))

= (1/1/(x + 2))− 2

= x + 2− 2 = x X

You try:

1. Check that if f (x) = x3 + 2 then f −1(x) = (x − 2)1/3 by
calculating f (f −1(x)) and f −1(f (x)).

2. For the following functions, calculate f −1(x) and verify your
answer as above. (a)f (x) = 3/(x − 1) (b)f (x) = 5

√
x − 2
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calculating f (f −1(x)) and f −1(f (x)).

2. For the following functions, calculate f −1(x) and verify your
answer as above. (a)f (x) = 3/(x − 1) (b)f (x) = 5

√
x − 2



Logarithms

The exponential function ax has inverse loga(x)

, i.e.

loga(ax) = x = aloga(x), i.e.

y = ax if and only if loga(y) = x .

y=ax

y=loga(x)
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Properties of Logarithms

0 < a < 1:

a=0.8

a=0.1

y=ax

a=0.8

a=0.1
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Properties of Logarithms
Since. . .

1. a0 = 1

2. a1 = a

3. ab ∗ ac = ab+c

4. (ab)c = ab∗c

we know. . .

1. loga(1) = 0

2. loga(a) = 1

3. loga(b ∗ c) =
loga(b) + loga(c)

4. loga(bc) = c loga(b)

Example: why loga(b ∗ c) = loga(b) + loga(c):
Suppose y = loga(b) + loga(c).

Then ay = aloga(b)+loga(c)= aloga(b)aloga(c)= b ∗ c .

So y = loga(b ∗ c) as well!

Lastly:
loga(b)

loga(c)
= logc(b)
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Favorite logarithmic function

Remember: y = ex is the function whose slope through the point
(0,1) is 1.
The inverse to y = ex is the natural log:

ln(x) = loge(x)

y=ln(x)

y=ex

m=1

m=1

We will often use the facts that e ln(x) = x (for x > 0) and ln(ex) = x (for all x)
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Two super useful facts:

Explain why:
(1) loga(b) = ln(b)/ ln(a)

Since ln(b) = loge(b) and ln(a) = loge(a), we have

ln(b)

ln(a)
=

loge(b)

loge(a)
= loga(b)

(2) ab = eb ln(a)
[hint: start by rewriting b ln(a), and use the fact that e ln(x) = x]

Since b ln(a) = ln(ab) and e ln(x) = x , we have

eb ln(a) = e ln(a
b) = ab
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Examples:
(1) Condense the logarithmic expressions

1

2
ln(x)+3 ln(x+1) 2 ln(x+5)−ln(x)

1

3
(log3(x)−log3(x+1))

ln(
√
x(x + 1)3) ln

(
(x+5)2

x

)
log3

((
x

x+1

)1/3
)

(2) Solve the following expressions for x :

e−x2 = e−3x−4 3(2x) = 24

x = −1, 4 x = 3

2(e3x−5)− 5 = 11 ln(3x + 1)− ln(5) = ln(2x)

x = ln(8)+5
3 x = 1

7
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Inverse trig functions

Two notations:

f (x) f −1(x)

sin(x) sin−1(x) = arcsin(x)
cos(x) cos−1(x) = arccos(x)
tan(x) tan−1(x) = arctan(x)
sec(x) sec−1(x) = arcsec(x)
csc(x) csc−1(x) = arccsc(x)
cot(x) cot−1(x) = arccot(x)

There are lots of points we know on these functions...

Examples:

1. Since sin(π/2) = 1, we have arcsin(1) = π/2

2. Since cos(π/2) = 0, we have arccos(0) = π/2

Etc...
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In general:
arc ( - ) takes in a ratio and spits out an angle:

θ

𝒄

𝒂

𝒃

cos(θ) = a/c so arccos(a/c) = θ

sin(θ) = b/c so arcsin(b/c) = θ

tan(θ) = b/a so arctan(b/a) = θ

Domain problems:

sin(0) = 0, sin(π) = 0, sin(2π) = 0, sin(3π) = 0, . . .

So which is the right answer to arcsin(0), really?
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y = sin(x)
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Domain: −1 ≤ x ≤ 1 Range: −π/2 ≤ y ≤ π/2
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y = cos(x)

y = arccos(x)

Domain: −1 ≤ x ≤ 1 Range: 0 ≤ y ≤ π
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