Inverse functions and logarithms
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Recall that a function is a machine that takes a number from one
set and puts a number of another set. Must be well-defined,
meaning the function is decisive: (1) always has an answer and (2)
always puts out one answer for each number taken in.
Examples:

1. f:R — R defined by x — x?; e.g.

1 -2 -7 1/3 etc.
1 1 1
1 4 w2 1/9

2. f:R>p — R defined by x — [/x]; e.g.

4 7 1/9 etc.
I 17 1
2 T

1/3

= o~

Note that \/x is only a function when we go to extra effort to
decide that we're always going to choose the positive answer.
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3. Let bacteria grow, and measure population over time.
Consider N : N — N by N(t) = # bacteria at time t.

t N(t) = pop. at time t
(hours)
0 100
1 168
2 259
3 258
4 445
5 509

Now suppose we we're trying to ask the question “how long will it
take to grow at least 500 bacteria?”’

Answer: between 4 and 5 hours
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Inverse functions

Given a function f, the inverse function f~1 is the machine that
takes in f's output, and returns the corresponding input.

X s f(x) S x
In notation, we write that
FH(f(x)) = x and f(F(x)) = x.
Example: If f: R>¢ — R is given by
f(x) = x?, then F(x) = Vx| = Vx.
Non-Example: If f : R — Rx> is given by

f(x) = x2, then f~1(x) is not well-defined.



If f:R>o — Rx>¢ is given by
f(x) = x2, then F(x) = [Vx|.
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If y = x? and x > 0, then x = |/y|.



If f: R — R>q is given by
f(x) = x?, then f~1(x) is not well-defined.
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If y = x?, then x = |\/y| or —|\/y|. Which one???



If f:R — R>q is given by

f(x) = x2, then |v/x]| is not the inverse.

A
y

f-1
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If y = x? and x < 0, then x # |,/y|!
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When is a function invertible?

A function f is one-to-one if no two inputs give the same output,
that is, if x; # x2, then f(x1) # f(x2).

Example: over all real numbers, f(x) = x* is not one-to-one.
However, over non-negative real numbers, f(x) = x? is one-to-one.

2

no! yes!

Horizontal line test: A function is one-to-one if and only if no
horizontal line intersects the function's graph more than once.
Answer: A function is invertible if and only if it is one-to-one.
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Graphing inverses

For a one-to-one function f, we have

f(x)=y if and only if x=f"1(y)

The graph of y = f~1(x) is the reflection of the graph of f over
the line y = x (i.e. swap the axes).



Graphing inverses

For a one-to-one function f, we have

fx)=y if and only if x=f"Yy)

The graph of y = f~%(x) is the reflection of the graph of f over
the line y = x (i.e. swap the axes). Further,

the domain of f is the range of 1,
and

the range of f is the domain of 1.



You try:

» For each of the following functions, (a) give the domain and
range of f, and (b) decide if f is invertible.

» If f is invertible, then (c) sketch a graph of =1, (d) give the
domain and range of f~1, and (e) try to write a formula for
FL

> If f is not invertible over all of the real numbers, what is a
restricted domain over which f is invertible? Over that
restricted domain, do (c) and (d) from above.

(1) F) =1Ix| - (2) () = x*(3) f(x) =cos(x) (4) f(x) =1/(x+2)
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Calculating the inverse function algebraically
Given an invertible f, solve for f~! by setting f(y) = x, and
solving for y = f~1(x).
Example: Let f(x) =1/(x +2).
Set
x=1f(y)=1/(y +2).

Then
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Calculating the inverse function algebraically
Given an invertible f, solve for f~! by setting f(y) = x, and
solving for y = f~1(x).
Example: Let f(x) =1/(x +2).
Set
x=1f(y)=1/(y +2).

Then

y+2=1/x, so that | F~1(x) =y = (1/x) — 2|

Example: Let f(x) = x3 + 2. (Check: is it invertible??)
Set
x="f(y)=y>+2.

Then

y =x-2, so that | f~1(x) =y = (x —2)¥/3|
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Checking your answer algebraically
Recall that £~ is defined by

F(F(x)) = x and fH(F(x)) = x.

Example: We calculated that if f(x) = 1/(x + 2), then
f~(x) = (1/x) — 2. Let's check!

F(F1(x) = 1/((1/x) =2 +2)
=1/(1/x)=x v

and f*l(f(x)):(l/l/(x+2))_2

=x+2-2=x Vv



Checking your answer algebraically
Recall that £~ is defined by

F(F(x)) = x and fH(F(x)) = x.

Example: We calculated that if f(x) = 1/(x + 2), then
f~(x) = (1/x) — 2. Let's check!

F(F1(x) = 1/((1/x) =2 +2)

=1/(1/x)=x v
and FL(F(x)) = (1/1/(x +2)) -2

=x+2-2=x v
You try:

1. Check that if f(x) = x> + 2 then f~1(x) = (x — 2)}/3 by
calculating f(f~1(x)) and f~1(f(x)).
2. For the following functions, calculate f~1(x) and verify your

answer as above. (a)f(x) =3/(x —1) (b)f(x) =5vx—2
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Logarithms

The exponential function a* has inverse log,(x), i.e.

log,(a¥) = x = 2980 je.

X

y=a if and only if  log,(y) = x.
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Properties of Logarithms

O<axl:

y=log,(x)

Domain: (0,00) i.e. all x >0 Range: (—o0,00) i.e. all x
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Properties of Logarithms

Since. .. we know. ..
1. a%=1 1. log,(1) =0
2. al=a 2. log,(a) =1
3. aPx a® = abte log, (b c) =
log,(b) + log,(c)
4. (ab)e = abxe 4. log,(b°) = clog,(b)

Example: why log,(b* c) = log,(b) + log,(c):
Suppose y = log,(b) + log,(c).

Then 3¥ = a/Oga(b)+|°ga(C): alOga(b)a/"ga(C): bx c.
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Properties of Logarithms

Since. .. we know. ..
1.a%=1 1. log,(1) =0
2. al=a 2. log,(a) =1
3. aP x a¢ = abte log,(b* c) =
log,(b) + log,(c)
4. (ab)e = abxe 4. log,(b°) = clog,(b)

Example: why log,(b* c) = log,(b) + log,(c):
Suppose y = log,(b) + log,(c).

Then 3¥ = a/0ga(b)+|°ga(c): alOga(b)a/‘)ga(C): bx c.
So y = log, (b« c) as well!

Lastly: log,(b) _ log.(b)

log,(c)




Favorite logarithmic function

Remember: y = e is the function whose slope through the point
(0,1) is 1.
The inverse to y = €* is the natural log:

In(x) = log,(x)




Favorite logarithmic function

Remember: y = e is the function whose slope through the point
(0,1) is 1.
The inverse to y = €* is the natural log:

In(x) = log,(x)

m=1

We will often use the facts that ") = x (for x> 0) and In(eX) = X (forall x)



Two super useful facts:

Explain why:

(1) log,(b) = In(b)/In(a)

(2) ab = eb In(a) [hint: start by rewriting bIn(a), and use the fact that ") = x]



Two super useful facts:

Explain why:

(1) log,(b) = In(b)/In(a)

Since In(b) = log.(b) and In(a) = log.(a), we have

(2) ab = eb In(a) [hint: start by rewriting bIn(a), and use the fact that ) = x]

Since bln(a) = In(a?) and ") = x, we have

ebln(a) _ eln(ab) _ ab



Examples:
(1) Condense the logarithmic expressions
1 1
5 In(x)+3In(x+1) 2In(x+5)—In(x) §(|0g3(x)—|og3(x+1))

(2) Solve the following expressions for x:

2 _3x—
ex_e3x4

= 3(2%) = 24

2> °) -5 =11 In(3x + 1) — In(5) = In(2x)



Examples:
(1) Condense the logarithmic expressions

5 In(x)+3In(x+1) 2In(x+5)—In(x) %(Iog3(x)—log3(x+1))

s 1] [ (S5 s ((20) )

(2) Solve the following expressions for x:

e = e 3(2¥) =24

2> °) -5 =11 In(3x + 1) — In(5) = In(2x)

=




Inverse trig functions

Two notations:

f(x f~1(x)

sin(x) sin~1(x) = arcsin(x)
cos(x) cos~1(x) = arccos(x)
tan(x) tan—!(x) = arctan(x)
sec(x) sec !(x) = arcsec(x)
csc(x) csc1(x) = arcesc(x)
cot(x) cot~!(x) = arccot(x)



Inverse trig functions

Two notations:

f(x) f~1(x)

sin(x) sin~1(x) = arcsin(x)
cos(x) cos~1(x) = arccos(x)
tan(x) tan—!(x) = arctan(x)
sec(x) sec !(x) = arcsec(x)
csc(x) csc1(x) = arcesc(x)
cot(x) cot~!(x) = arccot(x)

There are lots of points we know on these functions...

Examples:

1. Since sin(w/2) = 1, we have arcsin(1) = /2

2. Since cos(7/2) = 0, we have arccos(0) = 7/2

Etc...



In general:

arc__ (- ) takes in a ratio and spits out an angle:

arccos(a/c) =0
arcsin(b/c) =0
arctan(b/a) = 0



In general:

arc__ (- ) takes in a ratio and spits out an angle:

Y
b
A
a
cos(f) = a/c so arccos(a/c) =0
sin(d) = b/c so arcsin(b/c) =0
tan(0) = b/a so arctan(b/a) = 0

Domain problems:
sin(0) =0, sin(m) = 0, sin(2m) =0, sin(37) =0,...

So which is the right answer to arcsin(0), really?
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y = cos(x)
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y = arccos(x)
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Domain: -1 <x<1 Range: 0 <y <7
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y = arctan(x)

Domain: —oo < x < o0 Range: —m/2 <y <7/2
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y = arccsc(x)
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y = arccsc(x)

Domain: x < —1and 1< x Range: —1/2 <y < /2
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y = cot(x)
y = arccot(x)

Domain: —oc0 < x < o0



Domain/range

Domain: —oc0 < x < o0



Domain/range

y = arccot(x)

Domain: —co < x < o0 Range: 0 <y <m



Graphs




