
Important websites:
Course website: Notes, written and reading assignments, etc.

zdaugherty.ccnysites.cuny.edu/teaching/m201f18/
My Math Lab (MML): Online assignments.

www.pearson.com/mylab
(See main course website for instructions.)

Upcoming deadlines:
Due Sunday 9/2

∗ From MML: Orientation Assignment
Due Tuesday 9/4

∗ From MML: Section 1.1, Section 1.2
∗ From course website: Homework 0 email

Due Thursday 9/6
∗ From MML: Section 1.3, Section 1.5
∗ From course website: summaries

First quiz: In class, Tuesday 9/4.



Trigonometric functions, step one: similar triangles
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Easy angles:

isosceles right triangle: equilateral triangle cut in half:
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Step two: the unit circle
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(x , y)
For 0 < θ < π

2 ...

cos(θ) =
x

1
= x

sin(θ) =
y

1
= y

Use this idea to extend trig functions to any θ...
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Define
cos(θ) = x sin(θ) = y,

where θ is defined by...

0 ≤ θ ≤ 2π all θ ≥ 0 θ < 0

-1 1

-1

1

θ

(x , y)

-1 1

-1

1

θ

(x , y)

-1 1

-1

1

θ

(x , y)

Sidebar: In calculus, radians are king. Where do they come from?
Circumference of a unit circle: 2π

Arclength of a wedge with angle θ:
θ

360◦ ∗ 2π (if in degrees) or θ
2π ∗ 2π = θ (if in radians)
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Reading off of the unit circle
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Plotting on the θ-y axis

Graph of y = cos(θ):
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A = Amplitude = 1
2 length of the range = 1

T=Period = time to repeat = 2π

Graph of y = sin(θ):

-1

1

π
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-π

-2π

A=Amplitude = 1
2 length of the range = 1

T=Period = time to repeat = 2π

You try: Transform the graph of sin(θ) into the graph of
2 sin(12θ + π/6)− 1, one step at a time. (See notes)
What is the amplitude of 2 sin

(
1
2θ +

π
6

)
− 1? What is the period?
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Trig identities to know and love:

Even/odd:

cos(−θ) = cos(θ) (even) sin(−θ) = − sin(θ) (odd)

Pythagorean identity:

cos2(θ) + sin2(θ) = 1

Angle addition:

cos(θ + φ) = cos(θ) cos(φ)− sin(θ) sin(φ)

sin(θ + φ) = sin(θ) cos(φ) + cos(θ) sin(φ)

(in particular cos(2θ) = cos2(θ)− sin2(θ) and sin(2θ) = 2 sin(θ) cos(θ))



Other trig functions

y = cos(θ) y = sin(θ)
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Other trig functions

y = cos(θ) y = sin(θ)
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Exponential functions

The basics: Let n and m be positive integers, and a be a real number.

an = a · a · · · · · a︸ ︷︷ ︸
n

(MML: a∧n)

Examples:

25 = 2 ∗ 2 ∗ 2 ∗ 2 ∗ 2
25 ∗ 23 = (2 ∗ 2 ∗ 2 ∗ 2 ∗ 2) ∗ (2 ∗ 2 ∗ 2) = 28

(23)5 = (2 ∗ 2 ∗ 2) ∗ (2 ∗ 2 ∗ 2) ∗ (2 ∗ 2 ∗ 2) ∗ (2 ∗ 2 ∗ 2) ∗ (2 ∗ 2 ∗ 2) = 215

23
5

= 2243 >> (23)
5

= 215

23 ∗ 53 = (2 ∗ 2 ∗ 2) ∗ (5 ∗ 5 ∗ 5) = (2 ∗ 5) ∗ (2 ∗ 5) ∗ (2 ∗ 5) = (2 ∗ 5)3

Some identities:
an ∗ am = an+m (an)m = an∗m

(Notice: am
n

means a(m
n), since (am)

n
can be written another way)

an ∗ bn = (a ∗ b)n
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Some identities:
an ∗ am = an+m

(an)m = an∗m

(Notice: am
n

means a(m
n), since (am)

n
can be written another way)

an ∗ bn = (a ∗ b)n



Exponential functions

The basics: Let n and m be positive integers, and a be a real number.

an = a · a · · · · · a︸ ︷︷ ︸
n

(MML: a∧n)
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Exponential functions

The basics: Let n and m be positive integers, and a be a real number.

an = a · a · · · · · a︸ ︷︷ ︸
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Some identities:
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(Notice: am
n

means a(m
n), since (am)

n
can be written another way)

an ∗ bn = (a ∗ b)n



Pushing it further...

Take for granted: If n and m are positive integers,

an = a · a · · · · · a︸ ︷︷ ︸
n

, an ∗ am = an+m, (an)m = an∗m.

Notice:

1. What is a0?
an = an+0 = an ∗ a0

, so a0 = 1 .

2. What is ax if x is negative?

an ∗ a−n = an−n = a0 = 1

, so a−n = 1/(an) .

3. What is ax if x is a fraction?

(an)1/n = an∗
1
n = a1 = a

, so a1/n = n
√
a

and am/n = n
√
am = ( n

√
a)
m

.

Example: 85/3 =
(

3
√
8
)5

= 25 = 32 or 85/3 =
3
√
85 = 3

√
32,768 = 32
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What is ax for all x?

If a > 1:

(e.g. a = 2)

-3 -2 -1 1 2 3

2

4

6

8

x = 1, 2, 3, . . .
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(e.g. a = 2)
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x = . . . ,−3,−2,−1, 0, 1, 2, 3, . . .
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What is ax for all x?

If a > 1:

(e.g. a = 2)

-3 -2 -1 1 2 3

2

4

6

8

x = n/2, for n = 0,±1,±2,±3, . . .



What is ax for all x?

If a > 1:

(e.g. a = 2)

-3 -2 -1 1 2 3

2

4

6

8

x = n/2 and n/3, for n = 0,±1,±2,±3, . . .



What is ax for all x?

If a > 1:

(e.g. a = 2)

-3 -2 -1 1 2 3

2

4

6

8

x = n/2, n/3, . . . , n/15, for n = 0,±1,±2,±3, . . .



What is ax for all x?

If a > 1:

(e.g. a = 2)

-3 -2 -1 1 2 3

2

4

6

8

x = n/2, n/3, . . . , n/100, for n = 0,±1,±2,±3, . . .



What is ax for all x?

If a > 1:

(e.g. a = 2)

-3 -2 -1 1 2 3

2

4

6

8

y = ax



What is ax for all x?

If 0 < a < 1:

(e.g. a = 1
2)

-3 -2 -1 1 2 3

2
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8

x = . . . ,−3,−2,−1, 0, 1, 2, 3, . . .



What is ax for all x?

If 0 < a < 1:

(e.g. a = 1
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-3 -2 -1 1 2 3
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x = . . . ,−3,−2,−1, 0, 1, 2, 3, . . .



What is ax for all x?

If 0 < a < 1:

(e.g. a = 1
2)

-3 -2 -1 1 2 3

2

4

6

8

x = n/2, n/3, n/4, n/5, for n = 0,±1,±2,±3, . . .



What is ax for all x?

If 0 < a < 1:

(e.g. a = 1
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-3 -2 -1 1 2 3

2
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8

x = n/2, n/3, . . . , n/100, for n = 0,±1,±2,±3, . . .



What is ax for all x?
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(e.g. a = 1
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What is ax for all x?

If 0 > a:

(e.g. a = −2)

-3 -2 -1 1 2 3
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x = . . . ,−3,−2,−1, 0, 1, 2, 3, . . .



What is ax for all x?

If 0 > a:

(e.g. a = −2)
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x = n/3, for n = 0,±1,±2,±3, . . .



What is ax for all x?

If 0 > a:

(e.g. a = −2)

-3 -2 -1 1 2 3
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-4

-2

2

4

6

8

x = n/3 and n/2, for n = 0,±1,±2,±3, . . .



What is ax for all x?
If 0 > a:

(e.g. a = −2)

-3 -2 -1 1 2 3

-8

-6

-4

-2

2

4

6

8

x = n/2, n/3, . . . , n/100, for n = 0,±1,±2,±3, . . .
OH NO!



The function ax:

1 < a: 0 < a < 1:

1
1

D: (−∞,∞), R: (0,∞) D: (−∞,∞), R: (0,∞)

a = 1: a = 0:

1

D: (−∞,∞), R: {1} D: (0,∞), R: {0}

(If a < 0, then ax is not defined as a function on the real numbers.)

Properties:

ab ∗ ac = ab+c (ab)c = ab∗c a−x = 1/ax ac ∗ bc = (ab)c



Our favorite exponential function:
Look at how the function is increasing through the point (0, 1):

y = ax :

a=1.1

a=1.5

a=2
a=3

a=10

Q: Is there an exponential function whose slope at (0,1) is 1?
A: ex is the exponential function whose slope at (0,1) is 1.

(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)

Read: “Exponential growth and decay”, examples 3 and 4.



Our favorite exponential function:
Look at how the function is increasing through the point (0, 1):

y = ax :

a=1.1

Q: Is there an exponential function whose slope at (0,1) is 1?
A: ex is the exponential function whose slope at (0,1) is 1.

(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)

Read: “Exponential growth and decay”, examples 3 and 4.



Our favorite exponential function:
Look at how the function is increasing through the point (0, 1):

y = ax :

a=1.5

Q: Is there an exponential function whose slope at (0,1) is 1?
A: ex is the exponential function whose slope at (0,1) is 1.

(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)

Read: “Exponential growth and decay”, examples 3 and 4.



Our favorite exponential function:
Look at how the function is increasing through the point (0, 1):

y = ax :

a=2

Q: Is there an exponential function whose slope at (0,1) is 1?
A: ex is the exponential function whose slope at (0,1) is 1.

(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)

Read: “Exponential growth and decay”, examples 3 and 4.



Our favorite exponential function:
Look at how the function is increasing through the point (0, 1):

y = ax :
a=3

Q: Is there an exponential function whose slope at (0,1) is 1?
A: ex is the exponential function whose slope at (0,1) is 1.

(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)

Read: “Exponential growth and decay”, examples 3 and 4.



Our favorite exponential function:
Look at how the function is increasing through the point (0, 1):

y = ax :

a=10

Q: Is there an exponential function whose slope at (0,1) is 1?
A: ex is the exponential function whose slope at (0,1) is 1.

(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)

Read: “Exponential growth and decay”, examples 3 and 4.



Our favorite exponential function:
Look at how the function is increasing through the point (0, 1):

y = ax :

Q: Is there an exponential function whose slope at (0,1) is 1?

A: ex is the exponential function whose slope at (0,1) is 1.
(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)

Read: “Exponential growth and decay”, examples 3 and 4.



Our favorite exponential function:
Look at how the function is increasing through the point (0, 1):

y = ax :

a=2

a=3

Q: Is there an exponential function whose slope at (0,1) is 1?

A: ex is the exponential function whose slope at (0,1) is 1.
(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)

Read: “Exponential growth and decay”, examples 3 and 4.



Our favorite exponential function:
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a=2.71828183...

Q: Is there an exponential function whose slope at (0,1) is 1?

A: ex is the exponential function whose slope at (0,1) is 1.
(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)

Read: “Exponential growth and decay”, examples 3 and 4.
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y = ax :

e=2.71828183...

Q: Is there an exponential function whose slope at (0,1) is 1?
A: ex is the exponential function whose slope at (0,1) is 1.

(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)

Read: “Exponential growth and decay”, examples 3 and 4.



Our favorite exponential function:
Look at how the function is increasing through the point (0, 1):

y = ax :

e=2.71828183...

Q: Is there an exponential function whose slope at (0,1) is 1?
A: ex is the exponential function whose slope at (0,1) is 1.

(e = 2.71828183 . . . is to calculus as π = 3.14159265 . . . is to geometry)

Read: “Exponential growth and decay”, examples 3 and 4.


