Important websites:

Course website: Notes, written and reading assignments, etc. zdaugherty.ccnysites.cuny.edu/teaching/m201f18/
My Math Lab (MML): Online assignments.
www.pearson.com/mylab
(See main course website for instructions.)

Upcoming deadlines:
 Due Sunday 9/2
 * From MML: Orientation Assignment

Due Tuesday 9/4

* From MML: Section 1.1, Section 1.2
* From course website: Homework 0 email

Due Thursday 9/6

* From MML: Section 1.3, Section 1.5
* From course website: summaries

First quiz: In class, Tuesday 9/4.

Trigonometric functions, step one: similar triangles

Two similar triangles have the same set of angles, and have the properties that

$$
\frac{A}{B}=\frac{a}{b}, \quad \frac{B}{C}=\frac{b}{c}, \text { and } \frac{A}{C}=\frac{a}{c} .
$$

Trigonometric functions, step one: similar triangles

Two similar triangles have the same set of angles, and have the properties that

$$
\frac{A}{B}=\frac{a}{b}, \quad \frac{B}{C}=\frac{b}{c}, \text { and } \frac{A}{C}=\frac{a}{c} .
$$

Define

$$
\cos (\theta)=\frac{b}{c} \quad \text { and } \quad \sin (\theta)=\frac{a}{c}
$$

Trigonometric functions, step one: similar triangles

Two similar triangles have the same set of angles, and have the properties that

$$
\frac{A}{B}=\frac{a}{b}, \quad \frac{B}{C}=\frac{b}{c}, \text { and } \frac{A}{C}=\frac{a}{c} .
$$

Define

$$
\cos (\theta)=\frac{b}{c} \quad \text { and } \quad \sin (\theta)=\frac{a}{c}
$$

Then let

$$
\begin{array}{ll}
\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}=\frac{a}{b}, & \csc (\theta)=\frac{1}{\sin (\theta)}=\frac{c}{a}, \\
\sec (\theta)=\frac{1}{\cos (\theta)}=\frac{c}{b}, & \cot (\theta)=\frac{1}{\tan (\theta)}=\frac{b}{a} .
\end{array}
$$

Easy angles:

isosceles right triangle:

equilateral triangle cut in half:

$$
h=\sqrt{1-(1 / 2)^{2}}=\sqrt{3} / 2
$$

	$\cos (\theta)$	$\sin (\theta)$	$\tan (\theta)$	$\sec (\theta)$	$\csc (\theta)$	$\cot (\theta)$
$\pi / 4$						
$\pi / 3$						
$\pi / 6$						

Easy angles:

isosceles right triangle:

equilateral triangle cut in half:

$$
h=\sqrt{1-(1 / 2)^{2}}=\sqrt{3} / 2
$$

	$\cos (\theta)$	$\sin (\theta)$	$\tan (\theta)$	$\sec (\theta)$	$\csc (\theta)$	$\cot (\theta)$
$\pi / 4$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\pi / 3$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$	2	$\frac{2}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$
$\pi / 6$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{1}{\sqrt{3}}$	$\frac{2}{\sqrt{3}}$	2	$\sqrt{3}$

Step two: the unit circle

For $0<\theta<\frac{\pi}{2} \ldots$

Step two: the unit circle

For $0<\theta<\frac{\pi}{2} \ldots$

Step two: the unit circle

$$
\text { For } 0<\theta<\frac{\pi}{2} \ldots
$$

$$
\begin{aligned}
& \cos (\theta)=\frac{x}{1}=x \\
& \sin (\theta)=\frac{y}{1}=y
\end{aligned}
$$

Use this idea to extend trig functions to any $\theta \ldots$

Define

$$
\cos (\theta)=x \quad \sin (\theta)=y
$$

where θ is defined by...

Define

$$
\cos (\theta)=x \quad \sin (\theta)=y
$$

where θ is defined by...

Sidebar: In calculus, radians are king. Where do they come from?
Circumference of a unit circle: 2π
Arclength of a wedge with angle θ :

$$
\frac{\theta}{360^{\circ}} * 2 \pi \quad \text { (if in degrees) or } \quad \frac{\theta}{2 \pi} * 2 \pi=\theta \quad \text { (if in radians) }
$$

Reading off of the unit circle

	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$		
$\cos (\theta)$									
$\sin (\theta)$									
$\cos (\theta)$		$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	$\frac{7 \pi}{4}$
$\sin (\theta)$					$\frac{11 \pi}{6}$				

Reading off of the unit circle

	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\cos (\theta)$	1	0	-1	0			
$\sin (\theta)$	0	1	0	-1			

	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	$\frac{7 \pi}{4}$	$\frac{11 \pi}{6}$
$\cos (\theta)$									
$\sin (\theta)$									

Reading off of the unit circle

	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\cos (\theta)$	1	0	-1	0	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
$\sin (\theta)$	0	1	0	-1	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$

	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	$\frac{7 \pi}{4}$	$\frac{11 \pi}{6}$
$\cos (\theta)$									
$\sin (\theta)$									

Reading off of the unit circle

$$
\cos (\pi-\theta)=-\cos (\theta) \quad \sin (\pi-\theta)=\sin (\theta)
$$

	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\cos (\theta)$	1	0	-1	0	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
$\sin (\theta)$	0	1	0	-1	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$

	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	$\frac{7 \pi}{4}$	$\frac{11 \pi}{6}$
$\cos (\theta)$									
$\sin (\theta)$									

Reading off of the unit circle

$$
\cos (\pi-\theta)=-\cos (\theta) \quad \sin (\pi-\theta)=\sin (\theta)
$$

	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\cos (\theta)$	1	0	-1	0	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
$\sin (\theta)$	0	1	0	-1	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$

	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	$\frac{7 \pi}{4}$	$\frac{11 \pi}{6}$
$\cos (\theta)$	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$						
$\sin (\theta)$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$						

Reading off of the unit circle

$$
\cos (\pi-\theta)=-\cos (\theta) \quad \sin (\pi-\theta)=\sin (\theta)
$$

$$
\cos (-\theta)=\cos (\theta) \quad \sin (-\theta)=-\sin (\theta)
$$

$$
\cos (2 \pi n+\theta)=\cos (\theta) \quad \sin (2 \pi n+\theta)=\sin (\theta)
$$

	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\cos (\theta)$	1	0	-1	0	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
$\sin (\theta)$	0	1	0	-1	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$

	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	$\frac{7 \pi}{4}$	$\frac{11 \pi}{6}$
$\cos (\theta)$	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$						
$\sin (\theta)$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$						

Reading off of the unit circle

Reading off of the unit circle

Plotting on the $\theta-y$ axis

Graph of $y=\cos (\theta)$:

Graph of $y=\sin (\theta)$:

Plotting on the $\theta-y$ axis

Graph of $y=\cos (\theta)$:

Graph of $y=\sin (\theta)$:

Plotting on the $\theta-y$ axis

Graph of $y=\cos (\theta)$:

$$
A=\text { Amplitude }=\frac{1}{2} \text { length of the range }=1
$$

Graph of $y=\sin (\theta)$:

$A=$ Amplitude $=\frac{1}{2}$ length of the range $=1$

Plotting on the $\theta-y$ axis

Graph of $y=\cos (\theta)$:

$A=$ Amplitude $=\frac{1}{2}$ length of the range $=1$
$T=$ Period $=$ time to repeat $=2 \pi$
Graph of $y=\sin (\theta)$:

$A=$ Amplitude $=\frac{1}{2}$ length of the range $=1$
$T=$ Period $=$ time to repeat $=2 \pi$

Plotting on the $\theta-y$ axis

Graph of $y=\cos (\theta)$:

$A=$ Amplitude $=\frac{1}{2}$ length of the range $=1$
$T=$ Period $=$ time to repeat $=2 \pi$
Graph of $y=\sin (\theta)$:

$A=$ Amplitude $=\frac{1}{2}$ length of the range $=1$
$T=$ Period $=$ time to repeat $=2 \pi$
You try: Transform the graph of $\sin (\theta)$ into the graph of $2 \sin \left(\frac{1}{2} \theta+\pi / 6\right)-1$, one step at a time. (See notes)
What is the amplitude of $2 \sin \left(\frac{1}{2} \theta+\frac{\pi}{6}\right)-1$? What is the period?

Trig identities to know and love:

Even/odd:

$$
\cos (-\theta)=\cos (\theta) \quad(\text { even }) \quad \sin (-\theta)=-\sin (\theta) \quad(\text { odd })
$$

Pythagorean identity:

$$
\cos ^{2}(\theta)+\sin ^{2}(\theta)=1
$$

Angle addition:

$$
\begin{aligned}
& \cos (\theta+\phi)=\cos (\theta) \cos (\phi)-\sin (\theta) \sin (\phi) \\
& \sin (\theta+\phi)=\sin (\theta) \cos (\phi)+\cos (\theta) \sin (\phi)
\end{aligned}
$$

(in particular $\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)$ and $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$)

Other trig functions

Other trig functions

Exponential functions

The basics: Let n and m be positive integers, and a be a real number.

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n} \quad\left(\mathrm{MML}: a^{\wedge} n\right)
$$

Exponential functions

The basics: Let n and m be positive integers, and a be a real number.

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n} \quad\left(\mathrm{MML}: a^{\wedge} n\right)
$$

Examples:

$$
2^{5}=2 * 2 * 2 * 2 * 2
$$

Exponential functions

The basics: Let n and m be positive integers, and a be a real number.

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n} \quad\left(\mathrm{MML}: a^{\wedge} n\right)
$$

Examples:

$$
\begin{aligned}
2^{5} & =2 * 2 * 2 * 2 * 2 \\
2^{5} * 2^{3} & =(2 * 2 * 2 * 2 * 2) *(2 * 2 * 2)=2^{8}
\end{aligned}
$$

Exponential functions

The basics: Let n and m be positive integers, and a be a real number.

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots \cdot a}_{n} \quad\left(\mathrm{MML}: a^{\wedge} n\right)
$$

Examples:

$$
\begin{aligned}
2^{5} & =2 * 2 * 2 * 2 * 2 \\
2^{5} * 2^{3} & =(2 * 2 * 2 * 2 * 2) *(2 * 2 * 2)=2^{8}
\end{aligned}
$$

Some identities:

$$
a^{n} * a^{m}=a^{n+m}
$$

Exponential functions

The basics: Let n and m be positive integers, and a be a real number.

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots \cdot a}_{n} \quad\left(\mathrm{MML}: a^{\wedge} n\right)
$$

Examples:

$$
\begin{aligned}
2^{5} & =2 * 2 * 2 * 2 * 2 \\
2^{5} * 2^{3} & =(2 * 2 * 2 * 2 * 2) *(2 * 2 * 2)=2^{8} \\
\left(2^{3}\right)^{5} & =(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2)=2^{15}
\end{aligned}
$$

Some identities:

$$
a^{n} * a^{m}=a^{n+m}
$$

Exponential functions

The basics: Let n and m be positive integers, and a be a real number.

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots \cdot a}_{n} \quad\left(\mathrm{MML}: a^{\wedge} n\right)
$$

Examples:

$$
\begin{aligned}
2^{5} & =2 * 2 * 2 * 2 * 2 \\
2^{5} * 2^{3} & =(2 * 2 * 2 * 2 * 2) *(2 * 2 * 2)=2^{8} \\
\left(2^{3}\right)^{5} & =(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2)=2^{15}
\end{aligned}
$$

Some identities:

$$
a^{n} * a^{m}=a^{n+m} \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

Exponential functions

The basics: Let n and m be positive integers, and a be a real number.

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n} \quad\left(\mathrm{MML}: a^{\wedge} n\right)
$$

Examples:

$$
\begin{aligned}
2^{5} & =2 * 2 * 2 * 2 * 2 \\
2^{5} * 2^{3} & =(2 * 2 * 2 * 2 * 2) *(2 * 2 * 2)=2^{8} \\
\left(2^{3}\right)^{5} & =(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2)=2^{15} \\
2^{3^{5}} & =2^{243} \gg\left(2^{3}\right)^{5}=2^{15}
\end{aligned}
$$

Some identities:

$$
a^{n} * a^{m}=a^{n+m} \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

(Notice: $a^{m^{n}}$ means $a^{\left(m^{n}\right)}$, since $\left(a^{m}\right)^{n}$ can be written another way)

Exponential functions

The basics: Let n and m be positive integers, and a be a real number.

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots \cdot a}_{n} \quad\left(\mathrm{MML}: a^{\wedge} n\right)
$$

Examples:

$$
\begin{aligned}
2^{5} & =2 * 2 * 2 * 2 * 2 \\
2^{5} * 2^{3} & =(2 * 2 * 2 * 2 * 2) *(2 * 2 * 2)=2^{8} \\
\left(2^{3}\right)^{5} & =(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2)=2^{15} \\
2^{3^{5}} & =2^{243} \gg\left(2^{3}\right)^{5}=2^{15} \\
2^{3} * 5^{3} & =(2 * 2 * 2) *(5 * 5 * 5)=(2 * 5) *(2 * 5) *(2 * 5)=(2 * 5)^{3}
\end{aligned}
$$

Some identities:

$$
a^{n} * a^{m}=a^{n+m} \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

(Notice: $a^{m^{n}}$ means $a^{\left(m^{n}\right)}$, since $\left(a^{m}\right)^{n}$ can be written another way)

$$
a^{n} * b^{n}=(a * b)^{n}
$$

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

Notice:

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

Notice:

1. What is a^{0} ?

$$
a^{n}=a^{n+0}=a^{n} * a^{0}
$$

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

Notice:

1. What is a^{0} ?

$$
a^{n}=a^{n+0}=a^{n} * a^{0}, \quad \text { so } a^{0}=1
$$

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

Notice:

1. What is a^{0} ?

$$
a^{n}=a^{n+0}=a^{n} * a^{0}, \quad \text { so } a^{0}=1 .
$$

2. What is a^{x} if x is negative?

$$
a^{n} * a^{-n}=a^{n-n}=a^{0}=1
$$

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

Notice:

1. What is a^{0} ?

$$
a^{n}=a^{n+0}=a^{n} * a^{0}, \quad \text { so } a^{0}=1 .
$$

2. What is a^{x} if x is negative?

$$
a^{n} * a^{-n}=a^{n-n}=a^{0}=1, \quad \text { so } a^{-n}=1 /\left(a^{n}\right)
$$

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

Notice:

1. What is a^{0} ?

$$
a^{n}=a^{n+0}=a^{n} * a^{0}, \quad \text { so } a^{0}=1 .
$$

2. What is a^{x} if x is negative?

$$
a^{n} * a^{-n}=a^{n-n}=a^{0}=1, \quad \text { so } a^{-n}=1 /\left(a^{n}\right)
$$

3. What is a^{x} if x is a fraction?

$$
\left(a^{n}\right)^{1 / n}=a^{n * \frac{1}{n}}=a^{1}=a
$$

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

Notice:

1. What is a^{0} ?

$$
a^{n}=a^{n+0}=a^{n} * a^{0}, \quad \text { so } a^{0}=1 .
$$

2. What is a^{x} if x is negative?

$$
a^{n} * a^{-n}=a^{n-n}=a^{0}=1, \quad \text { so } a^{-n}=1 /\left(a^{n}\right)
$$

3. What is a^{x} if x is a fraction?

$$
\begin{aligned}
& \left(a^{n}\right)^{1 / n}=a^{n * \frac{1}{n}}=a^{1}=a, \quad \text { so } a^{1 / n}=\sqrt[n]{a} \\
& \quad \text { and } a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
\end{aligned}
$$

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

Notice:

1. What is a^{0} ?

$$
a^{n}=a^{n+0}=a^{n} * a^{0}, \quad \text { so } a^{0}=1 .
$$

2. What is a^{x} if x is negative?

$$
a^{n} * a^{-n}=a^{n-n}=a^{0}=1, \quad \text { so } a^{-n}=1 /\left(a^{n}\right)
$$

3. What is a^{x} if x is a fraction?

$$
\left(a^{n}\right)^{1 / n}=a^{n * \frac{1}{n}}=a^{1}=a, \quad \text { so } a^{1 / n}=\sqrt[n]{a}
$$

$$
\text { and } a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

Example: $8^{5 / 3}=(\sqrt[3]{8})^{5}=2^{5}=32$ or $8^{5 / 3}=\sqrt[3]{8^{5}}=\sqrt[3]{32,768}=32$

What is a^{x} for all x ?
If $a>1$:

What is a^{x} for all x ?
If $a>1$:

What is a^{x} for all x ?
If $a>1$:

What is a^{x} for all x ?
If $a>1$:

What is a^{x} for all x ?
If $a>1$:

What is a^{x} for all x ?
If $a>1$:

$$
x=n / 2, n / 3, \ldots, n / 15 \text {, for } n=0, \pm 1, \pm 2, \pm 3, \ldots
$$

What is a^{x} for all x ?
If $a>1$:

$$
x=n / 2, n / 3, \ldots, n / 100, \text { for } n=0, \pm 1, \pm 2, \pm 3, \ldots
$$

What is a^{x} for all x ?
If $a>1$:

What is a^{x} for all x ?
If $0<a<1$:

What is a^{x} for all x ?
If $0<a<1$:

What is a^{x} for all x ?
If $0<a<1$:

What is a^{x} for all x ?
If $0<a<1$:

What is a^{x} for all x ?
If $0<a<1$:

What is a^{x} for all x ?
If $0>a$:

What is a^{x} for all x ?
If $0>a$:

What is a^{x} for all x ?
If $0>a$:

What is a^{x} for all x ?
If $0>a$:

$$
\begin{aligned}
& \text { e.g. } a=-2 \text {) } \\
& x=n / 2, n / 3, \ldots, n / 100, \text { for } n=0, \pm 1, \pm 2, \pm 3, \ldots \\
& \mathrm{OH} \mathrm{NO} \text { ! }
\end{aligned}
$$

The function a^{x} :

$$
\text { D: }(-\infty, \infty), \text { R: }(0, \infty)
$$

$$
\mathrm{D}:(-\infty, \infty), \mathrm{R}:\{1\}
$$

D: $(-\infty, \infty), R:(0, \infty)$

D: $(0, \infty), R:\{0\}$
(If $a<0$, then a^{x} is not defined as a function on the real numbers.)

Properties:

$a^{b} * a^{c}=a^{b+c} \quad\left(a^{b}\right)^{c}=a^{b * c} \quad a^{-x}=1 / a^{x} \quad a^{c} * b^{c}=(a b)^{c}$

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Q: Is there an exponential function whose slope at $(0,1)$ is 1 ?

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

\mathbf{Q} : Is there an exponential function whose slope at $(0,1)$ is 1 ?

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Q: Is there an exponential function whose slope at $(0,1)$ is 1 ?

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Q: Is there an exponential function whose slope at $(0,1)$ is 1 ?
A: e^{x} is the exponential function whose slope at $(0,1)$ is 1 . ($e=2.71828183 \ldots$ is to calculus as $\pi=3.14159265 \ldots$ is to geometry)

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Q: Is there an exponential function whose slope at $(0,1)$ is 1 ?
A: e^{x} is the exponential function whose slope at $(0,1)$ is 1 . ($e=2.71828183 \ldots$ is to calculus as $\pi=3.14159265 \ldots$ is to geometry)

Read: "Exponential growth and decay", examples 3 and 4.

