Important websites:

 Course website: Notes, written and reading assignments, etc. zdaugherty.ccnysites.cuny.edu/teaching/m201f18/
 My Math Lab (MML): Online assignments.

www.pearson.com/mylab

(See main course website for instructions.)

Upcoming deadlines:

Due Sunday 9/2

* From MML: Orientation Assignment

Due Tuesday 9/4

 \ast From MML: Section 1.1, Section 1.2

* From course website: Homework 0 email

Due Thursday 9/6

- * From MML: Section 1.3, Section 1.5
- * From course website: summaries

First quiz: In class, Tuesday 9/4.

Trigonometric functions, step one: similar triangles

Two similar triangles have the same set of angles, and have the properties that

$$\frac{A}{B} = \frac{a}{b}, \quad \frac{B}{C} = \frac{b}{c}, \text{ and } \frac{A}{C} = \frac{a}{c}.$$

Trigonometric functions, step one: similar triangles

Two similar triangles have the same set of angles, and have the properties that

$$\frac{A}{B} = \frac{a}{b}, \quad \frac{B}{C} = \frac{b}{c}, \text{ and } \frac{A}{C} = \frac{a}{c}.$$

Define

$$\cos(\theta) = \frac{b}{c}$$
 and $\sin(\theta) = \frac{a}{c}$

Trigonometric functions, step one: similar triangles

Two similar triangles have the same set of angles, and have the properties that

$$\frac{A}{B} = \frac{a}{b}, \quad \frac{B}{C} = \frac{b}{c}, \text{ and } \frac{A}{C} = \frac{a}{c}.$$

Define

$$\cos(\theta) = \frac{b}{c}$$
 and $\sin(\theta) = \frac{a}{c}$

Then let

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{a}{b}, \qquad \csc(\theta) = \frac{1}{\sin(\theta)} = \frac{c}{a},$$
$$\sec(\theta) = \frac{1}{\cos(\theta)} = \frac{c}{b}, \qquad \cot(\theta) = \frac{1}{\tan(\theta)} = \frac{b}{a}.$$

Easy angles:

isosceles right triangle: equila $\sqrt{2}$ $\sqrt{2}$ 1 1

equilateral triangle cut in half:

$$h = \sqrt{1 - (1/2)^2} = \sqrt{3}/2$$

	$\cos(\theta)$	$\sin(\theta)$	$\tan(\theta)$	$\sec(\theta)$	$\csc(\theta)$	$\cot(\theta)$
$\pi/4$						
$\pi/3$						
$\pi/6$						

Easy angles:

isosceles right triangle: eq

equilateral triangle cut in half:

 $h=\sqrt{1-(1/2)^2}=\sqrt{3}/2$

	$\cos(\theta)$	$\sin(\theta)$	$ \tan(\theta) $	$\sec(\theta)$	$\csc(\theta)$	$\cot(heta)$
$\pi/4$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\pi/3$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$	2	$\frac{2}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$
$\pi/6$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{1}{\sqrt{3}}$	$\frac{2}{\sqrt{3}}$	2	$\sqrt{3}$

Step two: the unit circle

For
$$0 < \theta < \frac{\pi}{2}$$
...

Step two: the unit circle

For
$$0 < \theta < \frac{\pi}{2}$$
...

Step two: the unit circle

Use this idea to extend trig functions to any θ ...

Define

$$\cos(\theta) = x$$
 $\sin(\theta) = y$,

where θ is defined by...

Define

$$\cos(\theta) = x$$
 $\sin(\theta) = y$,

where θ is defined by...

Sidebar: In calculus, radians are king. Where do they come from? Circumference of a unit circle: 2π Arclength of a wedge with angle θ : $\frac{\theta}{360^{\circ}} * 2\pi$ (if in degrees) or $\frac{\theta}{2\pi} * 2\pi = \boxed{\theta}$ (if in radians)

You try: Transform the graph of $\sin(\theta)$ into the graph of $2\sin(\frac{1}{2}\theta + \pi/6) - 1$, one step at a time. (See notes) What is the amplitude of $2\sin(\frac{1}{2}\theta + \frac{\pi}{6}) - 1$? What is the period?

Trig identities to know and love:

Even/odd:

 $\cos(-\theta) = \cos(\theta)$ (even) $\sin(-\theta) = -\sin(\theta)$ (odd)

Pythagorean identity:

$$\cos^2(\theta) + \sin^2(\theta) = 1$$

Angle addition:

$$\cos(\theta + \phi) = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi)$$
$$\sin(\theta + \phi) = \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)$$

(in particular $\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$ and $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$)

Other trig functions

Other trig functions

The basics: Let n and m be positive integers, and a be a real number.

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (MML: a^n)

The basics: Let n and m be positive integers, and a be a real number.

$$a^n = \underbrace{a \cdot a \cdots a}_n$$
 (MML: a^n)

Examples:

$$2^5 = 2 * 2 * 2 * 2 * 2 * 2$$

The basics: Let n and m be positive integers, and a be a real number.

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (MML: a^n)

Examples:

$$2^5 = 2 * 2 * 2 * 2 * 2 2^5 * 2^3 = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^8$$

The basics: Let n and m be positive integers, and a be a real number.

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (MML: a^n)

Examples:

$$2^{5} = 2 * 2 * 2 * 2 * 2 * 2$$
$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$a^n * a^m = a^{n+m}$$

The basics: Let n and m be positive integers, and a be a real number.

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (MML: a^n)

Examples:

$$2^{5} = 2 * 2 * 2 * 2 * 2$$

$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$(2^{3})^{5} = (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 2^{15}$$

$$a^n * a^m = a^{n+m}$$

The basics: Let n and m be positive integers, and a be a real number.

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (MML: a^n)

Examples:

$$2^{5} = 2 * 2 * 2 * 2 * 2$$

$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$(2^{3})^{5} = (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 2^{15}$$

$$a^n * a^m = a^{n+m} \qquad (a^n)^m = a^{n*m}$$

The basics: Let n and m be positive integers, and a be a real number.

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (MML: a^n)

Examples:

$$2^{5} = 2 * 2 * 2 * 2 * 2$$

$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$(2^{3})^{5} = (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 2^{15}$$

$$2^{3^{5}} = 2^{243} >> (2^{3})^{5} = 2^{15}$$

Some identities:

$$a^n * a^m = a^{n+m} \qquad (a^n)^m = a^{n*m}$$

(Notice: a^{m^n} means $a^{(m^n)}$, since $(a^m)^n$ can be written another way)

The basics: Let n and m be positive integers, and a be a real number.

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (MML: a^n)

Examples:

$$2^{5} = 2 * 2 * 2 * 2 * 2$$

$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$(2^{3})^{5} = (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 2^{15}$$

$$2^{3^{5}} = 2^{243} >> (2^{3})^{5} = 2^{15}$$

$$2^{3} * 5^{3} = (2 * 2 * 2) * (5 * 5 * 5) = (2 * 5) * (2 * 5) * (2 * 5) = (2 * 5)^{3}$$

$$a^n * a^m = a^{n+m}$$
 $(a^n)^m = a^{n*m}$
(Notice: a^{m^n} means $a^{(m^n)}$, since $(a^m)^n$ can be written another way $a^n * b^n = (a * b)^n$

Pushing it further...

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is a^0 ?

$$a^n = a^{n+0} = a^n * a^0$$

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is a^0 ?

$$a^n = a^{n+0} = a^n * a^0,$$
 so $a^0 = 1$.

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is a^0 ? $a^n = a^{n+0} = a^n * a^0, \qquad \text{so } \boxed{a^0 = 1}.$

2. What is
$$a^x$$
 if x is negative?
 $a^n * a^{-n} = a^{n-n} = a^0 = 1$

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is a^{0} ? $a^{n} = a^{n+0} = a^{n} * a^{0}$, so $a^{0} = 1$. 2. What is a^{x} if x is negative? $a^{n} * a^{-n} = a^{n-n} = a^{0} = 1$, so $a^{-n} = 1/(a^{n})$.

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is a^{0} ? $a^{n} = a^{n+0} = a^{n} * a^{0}$, so $a^{0} = 1$. 2. What is a^{x} if x is negative? $a^{n} * a^{-n} = a^{n-n} = a^{0} = 1$, so $a^{-n} = 1$.

so
$$a^{-n} = 1/(a^n)$$
.

3. What is a^x if x is a fraction?

$$(a^n)^{1/n} = a^{n*\frac{1}{n}} = a^1 = a$$

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is a^{0} ? $a^{n} = a^{n+0} = a^{n} * a^{0}$, so $a^{0} = 1$. 2. What is a^{x} if x is negative? $a^{n} * a^{-n} = a^{n-n} = a^{0} = 1$, so $a^{-n} = 1/(a^{n})$.

3. What is a^x if x is a fraction?

$$(a^n)^{1/n} = a^{n*\frac{1}{n}} = a^1 = a, \qquad \text{so} \ \boxed{a^{1/n} = \sqrt[n]{a}}$$

and
$$a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is a^{0} ? $a^{n} = a^{n+0} = a^{n} * a^{0}$, so $a^{0} = 1$. 2. What is a^{x} if x is negative? $a^{n} * a^{-n} = a^{n-n} = a^{0} = 1$, so $a^{-n} = 1/(a^{n})$. 3. What is a^{x} if x is a fraction? $(a^{n})^{1/n} = a^{n*\frac{1}{n}} = a^{1} = a$, so $a^{1/n} = \sqrt[n]{a}$.

and
$$a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$$
.
Example: $8^{5/3} = (\sqrt[3]{8})^5 = 2^5 = 32$ or $8^{5/3} = \sqrt[3]{8^5} = \sqrt[3]{32,768} = 32$

The function a^x :

Properties:

$$a^{b} * a^{c} = a^{b+c}$$
 $(a^{b})^{c} = a^{b*c}$ $a^{-x} = 1/a^{x}$ $a^{c} * b^{c} = (ab)^{c}$

Q: Is there an exponential function whose slope at (0,1) is 1?

Q: Is there an exponential function whose slope at (0,1) is 1?

Q: Is there an exponential function whose slope at (0,1) is 1?

Look at how the function is increasing through the point (0,1):

Q: Is there an exponential function whose slope at (0,1) is 1? **A:** e^x is the exponential function whose slope at (0,1) is 1. (e = 2.71828183... is to calculus as $\pi = 3.14159265...$ is to geometry)

Look at how the function is increasing through the point (0,1):

Q: Is there an exponential function whose slope at (0,1) is 1? **A:** e^x is the exponential function whose slope at (0,1) is 1. (e = 2.71828183... is to calculus as $\pi = 3.14159265...$ is to geometry)

Read: "Exponential growth and decay", examples 3 and 4.