Functions and their graphs
 (Sections 1.1 \& 1.2)

Simplest functions: Lines!

Example:

Slope: $m=\frac{3.4-1.8}{3-1}=0.8$
(rise/run)
Point-slope form: $y-1.8=0.8 *(x-1)$ (good for writing down lines)
Slope-intercept form: $y=0.8 * x+1$ (good for graphing)

General form: $-0.8 * x+y-1=0$ (accounts for ∞ slope)

Lines: Special cases

Constant functions
($m=0$)

Parallel lines
$\left(m_{1}=m_{2}\right)$

Vertical lines $(m=\infty)$

Perpendicular lines

Other good functions to know: polynomials.

$$
\begin{aligned}
y= & a_{0}+a_{1} x+\cdots+a_{n} x^{n} \\
& (n \text { is the degree })
\end{aligned}
$$

The basics (know these graphs!)

$n=0:$	$n=1:$	$n=2:$
constants	lines	parabolas

Question: How many points to you need to solve for a polynomial of degree n ?

Other good functions to know: rationals.

$$
y=\frac{a_{0}+a_{1} x+\cdots+a_{n} x^{n}}{b_{0}+b_{1} x+\cdots+b_{m} x^{m}}
$$

The basics (know these graphs!)

Other powers: $y=x^{a}$.

The basics (know these graphs!)

$y=x^{1 / 3}=\sqrt[3]{x}$

Piecewise functions

Example:

$$
f(x)= \begin{cases}-x, & x<0 \\ x^{2}, & 0 \leq x \leq 1 \\ 1, x>1 & \end{cases}
$$

The absolute value of a real number x is

$$
|x|= \begin{cases}x & \text { if } x \text { is nonegative }, \\ -x & \text { if } x \text { is negative }\end{cases}
$$

so that $|x|$ is always nonnegative.

New functions from old

Graph of $y=f(x+2)$ (left shift) :

Graph of $y=f(2 x)$ (horizontal squeeze) :

Graph of $y=f(-x)$ (vertical reflection) :

Graph of $-y=f(-x)\left(180^{\circ}\right.$ rotation $)$:

Graph of $y=f(x)+1$ (up shift):

Graph of $y=4 * f(x)$ (vertical dialation):

Graph of $y=-f(x)$ (horizontal reflection):

Graph of $x=f(y)($ flip over $y=x)$:

Ex: Transform the graph of $f(x)$ into the graph of $-f\left(\frac{1}{2}(x+1)\right)+2$:

The domain of a function f is the set of x over which $f(x)$ is defined.
The range of a function f is the set of y which satisfy $y=f(x)$ for some x.

You try: (see notes)
Transform the graph of $f(x)$ into the graph of $-f\left(\frac{1}{2}(x+1)\right)+2$:

The domain of a function f is the set of x over which $f(x)$ is defined.
The range of a function f is the set of y which satisfy $y=f(x)$ for some x.

You try: If we set the domain of $f(x)$ to be $-1 \leq x \leq 1$, compute the domain and range of the functions at each step of computing the example above.
You try: Find the natural domain and range of each:

$$
a(x)=1-\sqrt{x} \quad b(x)=\frac{9}{1-x^{2}} \quad c(x)=1 /|x-3|
$$

Function composition

If f and g are functions, the composite function $f \circ g$ (f composed with g) is defined by

$$
(f \circ g)(x)=f(g(x))
$$

Example: Let $f(x)=x^{3}+1$ and let $g(x)=|x|$. We have

$$
f \circ g=|x|^{3}+1 \quad \text { and } \quad g \circ f=\left|x^{3}+1\right| \text {. }
$$

Symmetries

A function $f(x)$ is even if it satisfies

$$
f(-x)=f(x)
$$

A function $f(x)$ is odd if it satisfies

$$
f(-x)=-f(x)
$$

Examples: Even, odd, or neither?
(a)

(c)

(b)

(d) $f(x)=\frac{x^{3}+x}{x+\frac{1}{x}}$
(for this one:
actually plug in $-x$ and see what happens algebraically)

A graph is a graph of a function if for every x in its domain, there is exactly one y on the graph which is mapped to by that x :

Function:
Not a function:

A function is additionally one-to-one if for every y, there is at most one x which maps to that y.

A 1-to-1 functions:

Function that's not 1-to-1:

