Functions and their graphs (Sections 1.1 & 1.2)

Two points define a line!

Slope:
$$m=\frac{y_2-y_1}{x_2-x_1}$$
 (rise/run)

Two points define a line!

Slope:
$$m=\frac{y_2-y_1}{x_2-x_1}$$
 (rise/run)

Point-slope form: $y-y_1=m(x-x_1)$ (good for writing down lines)

Two points define a line!

Slope:
$$m=\frac{y_2-y_1}{x_2-x_1}$$
 (rise/run)

Point-slope form: $y-y_1=m(x-x_1)$ (good for writing down lines)

Slope-intercept form: $y=mx+b$ (good for graphing)

Two points define a line!

Slope:
$$m=\frac{y_2-y_1}{x_2-x_1}$$
 (rise/run)

Point-slope form: $y-y_1=m(x-x_1)$ (good for writing down lines)

Slope-intercept form: $y=mx+b$ (good for graphing)

General form: $Ax+By+C=0$ (accounts for ∞ slope)

Slope:
$$m = \frac{3.4 - 1.8}{3 - 1} = 0.8$$
 (rise/run)

Point-slope form: y-1.8=0.8*(x-1) (good for writing down lines)

Slope-intercept form: y = 0.8 * x + 1 (good for graphing)

General form: -0.8 * x + y - 1 = 0 (accounts for ∞ slope)

Lines: Special cases

Other good functions to know: polynomials.

$$y = a_0 + a_1 x + \dots + a_n x^n$$
(n is the degree)

Other good functions to know: polynomials.

$$y = a_0 + a_1 x + \dots + a_n x^n$$
(n is the degree)

The basics (know these graphs!)

Other good functions to know: polynomials.

$$y = a_0 + a_1 x + \dots + a_n x^n$$
(n is the degree)

The basics (know these graphs!)

Question: How many points to you need to solve for a polynomial of degree n?

Other good functions to know: rationals.

$$y = \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$

Other good functions to know: rationals.

$$y = \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$

The basics (know these graphs!)

Other powers: $y = x^a$.

The basics (know these graphs!)

Piecewise functions

Example:

$$f(x) = \begin{cases} -x, & x < 0 \\ x^2, & 0 \le x \le 1 \\ 1, x > 1 \end{cases}$$

The absolute value of a real number x is

$$|x| = \begin{cases} x & \text{if } x \text{ is nonegative,} \\ -x & \text{if } x \text{ is negative,} \end{cases}$$

so that |x| is always nonnegative.

Piecewise functions

Example:

$$f(x) = \begin{cases} -x, & x < 0 \\ x^2, & 0 \le x \le 1 \\ 1, x > 1 \end{cases}$$

The absolute value of a real number x is

$$|x| = \begin{cases} x & \text{if } x \text{ is nonegative,} \\ -x & \text{if } x \text{ is negative,} \end{cases}$$

so that |x| is always nonnegative.

Transform the graph of f(x) into the graph of $-f\left(\frac{1}{2}(x+1)\right)+2$:

Transform the graph of f(x) into the graph of $-f(\frac{1}{2}(x+1)) + 2$:

The domain of a function f is the set of x over which f(x) is defined. The range of a function f is the set of y which satisfy y=f(x) for some x.

Transform the graph of f(x) into the graph of $-f(\frac{1}{2}(x+1)) + 2$:

The domain of a function f is the set of x over which f(x) is defined. The range of a function f is the set of y which satisfy y=f(x) for some x.

You try: If we set the domain of f(x) to be $-1 \le x \le 1$, compute the domain and range of the functions at each step of computing the example above.

Transform the graph of f(x) into the graph of $-f(\frac{1}{2}(x+1)) + 2$:

The domain of a function f is the set of x over which f(x) is defined. The range of a function f is the set of y which satisfy y=f(x) for some x.

You try: If we set the domain of f(x) to be $-1 \le x \le 1$, compute the domain and range of the functions at each step of computing the example above.

You try: Find the natural domain and range of each:

$$a(x) = 1 - \sqrt{x}$$
 $b(x) = \frac{9}{1 - x^2}$ $c(x) = 1/|x - 3|$

Function composition

If f and g are functions, the composite function $f \circ g$ (f composed with g) is defined by

$$(f \circ g)(x) = f(g(x))$$

Function composition

If f and g are functions, the composite function $f\circ g$ (f composed with g) is defined by

$$(f \circ g)(x) = f(g(x))$$

Example: Let $f(x) = x^3 + 1$ and let g(x) = |x|.

Function composition

If f and g are functions, the composite function $f \circ g$ (f composed with g) is defined by

$$(f \circ g)(x) = f(g(x))$$

Example: Let $f(x) = x^3 + 1$ and let g(x) = |x|. We have

Symmetries

A function f(x) is even if it satisfies

$$f(-x) = f(x)$$

A function f(x) is odd if it satisfies

$$f(-x) = -f(x)$$

Examples: Even, odd, or neither?

(for this one: actually plug in -x and see what happens algebraically)

A graph is a graph of a function if for every x in its domain, there is exactly one y on the graph which is mapped to by that x:

Function:

Not a function:

A graph is a graph of a function if for every x in its domain, there is exactly one y on the graph which is mapped to by that x: Function:

Not a function:

A function is additionally one-to-one if for every y, there is at most one x which maps to that y.

A 1-to-1 functions:

Function that's not 1-to-1:

