Functions and their graphs (Sections $1.1 \& 1.2$)

Simplest functions: Lines!

Two points define a line!

Simplest functions: Lines!

Two points define a line!

Simplest functions: Lines!

Two points define a line!
Slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Simplest functions: Lines!

Two points define a line!
Slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Point-slope form: $y-y_{1}=m\left(x-x_{1}\right) \quad$ (good for writing down lines)

Simplest functions: Lines!

Two points define a line!
Slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Point-slope form: $y-y_{1}=m\left(x-x_{1}\right)$
(good for writing down lines)
Slope-intercept form: $y=m x+b$
(good for graphing)

Simplest functions: Lines!

Two points define a line!

Slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Point-slope form: $y-y_{1}=m\left(x-x_{1}\right)$
Slope-intercept form: $y=m x+b$
General form: $A x+B y+C=0$
(rise/run)
(good for writing down lines)
(good for graphing)
(accounts for ∞ slope)

Simplest functions: Lines!

Example:
Slope: $m=\frac{3.4-1.8}{3-1}=0.8$
Point-slope form: $y-1.8=0.8 *(x-1)$ (good for writing down lines)
Slope-intercept form: $y=0.8 * x+1$
(good for graphing)
General form: $-0.8 * x+y-1=0$

Lines: Special cases

Constant functions

$$
(m=0)
$$

Parallel lines
$\left(m_{1}=m_{2}\right)$

Vertical lines
($m=\infty$)

Perpendicular lines

Other good functions to know: polynomials.

$$
y=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

(n is the degree)

Other good functions to know: polynomials.

$$
y=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

(n is the degree)
The basics (know these graphs!)

$$
\begin{array}{ccc}
n=0: & n=1: & n=2: \\
\text { constants } & \text { lines } & \text { parabolas }
\end{array}
$$

Other good functions to know: polynomials.

$$
\begin{aligned}
y= & a_{0}+a_{1} x+\cdots+a_{n} x^{n} \\
& (n \text { is the degree })
\end{aligned}
$$

The basics (know these graphs!)

$$
\begin{array}{ccc}
n=0: & n=1: & n=2: \\
\text { constants } & \text { lines } & \text { parabolas }
\end{array}
$$

Question: How many points to you need to solve for a polynomial of degree n ?

Other good functions to know: rationals.

$$
y=\frac{a_{0}+a_{1} x+\cdots+a_{n} x^{n}}{b_{0}+b_{1} x+\cdots+b_{m} x^{m}}
$$

Other good functions to know: rationals.

$$
y=\frac{a_{0}+a_{1} x+\cdots+a_{n} x^{n}}{b_{0}+b_{1} x+\cdots+b_{m} x^{m}}
$$

The basics (know these graphs!)

Other powers: $y=x^{a}$.

The basics (know these graphs!)
$y=x^{1 / 2}=\sqrt{x}$

$$
y=x^{1 / 3}=\sqrt[3]{x}
$$

Piecewise functions

Example:

$$
f(x)= \begin{cases}-x, & x<0 \\ x^{2}, & 0 \leq x \leq 1 \\ 1, x>1 & \end{cases}
$$

The absolute value of a real number x is

$$
|x|= \begin{cases}x & \text { if } x \text { is nonegative } \\ -x & \text { if } x \text { is negative }\end{cases}
$$

so that $|x|$ is always nonnegative.

Piecewise functions

Example:

$$
f(x)= \begin{cases}-x, & x<0 \\ x^{2}, & 0 \leq x \leq 1 \\ 1, x>1 & \end{cases}
$$

The absolute value of a real number x is

$$
|x|= \begin{cases}x & \text { if } x \text { is nonegative } \\ -x & \text { if } x \text { is negative }\end{cases}
$$

so that $|x|$ is always nonnegative.

New functions from old

New functions from old

Graph of $y=f(x+2)$:

(left shift)

Graph of $y=f(x)+1$:

(up shift)

New functions from old

Graph of $y=f(2 x)$:

(horizontal squeeze)

Graph of $y=4 * f(x)$:

(vertical dialation)

New functions from old

Graph of $y=f(-x)$:

(vertical reflection)

Graph of $y=-f(x)$:

New functions from old

(rotation 180°)

(flip over $y=x$)

You try: (see notes)

Transform the graph of $f(x)$ into the graph of $-f\left(\frac{1}{2}(x+1)\right)+2$:

$$
\xrightarrow{f\left(\frac{1}{2} x\right)}
$$

You try: (see notes)

Transform the graph of $f(x)$ into the graph of $-f\left(\frac{1}{2}(x+1)\right)+2$:

$$
\xrightarrow{f\left(\frac{1}{2} x\right)}
$$

The domain of a function f is the set of x over which $f(x)$ is defined. The range of a function f is the set of y which satisfy $y=f(x)$ for some x.

You try: (see notes)

Transform the graph of $f(x)$ into the graph of $-f\left(\frac{1}{2}(x+1)\right)+2$:

$$
\xrightarrow{f\left(\frac{1}{2} x\right)}
$$

The domain of a function f is the set of x over which $f(x)$ is defined. The range of a function f is the set of y which satisfy $y=f(x)$ for some x.

You try: If we set the domain of $f(x)$ to be $-1 \leq x \leq 1$, compute the domain and range of the functions at each step of computing the example above.

You try: (see notes)

Transform the graph of $f(x)$ into the graph of $-f\left(\frac{1}{2}(x+1)\right)+2$:

$$
\xrightarrow{f\left(\frac{1}{2} x\right)}
$$

The domain of a function f is the set of x over which $f(x)$ is defined. The range of a function f is the set of y which satisfy $y=f(x)$ for some x.

You try: If we set the domain of $f(x)$ to be $-1 \leq x \leq 1$, compute the domain and range of the functions at each step of computing the example above.
You try: Find the natural domain and range of each:

$$
a(x)=1-\sqrt{x} \quad b(x)=\frac{9}{1-x^{2}} \quad c(x)=1 /|x-3|
$$

Function composition

If f and g are functions, the composite function $f \circ g$ (f composed with g) is defined by

$$
(f \circ g)(x)=f(g(x))
$$

Function composition

If f and g are functions, the composite function $f \circ g$ (f composed with g) is defined by

$$
(f \circ g)(x)=f(g(x))
$$

Example: Let $f(x)=x^{3}+1$ and let $g(x)=|x|$.

Function composition

If f and g are functions, the composite function $f \circ g$ (f composed with g) is defined by

$$
(f \circ g)(x)=f(g(x))
$$

Example: Let $f(x)=x^{3}+1$ and let $g(x)=|x|$. We have

$$
f \circ g=|x|^{3}+1 \quad \text { and } \quad g \circ f=\left|x^{3}+1\right| .
$$

Symmetries

ex: $f(x)=2 x^{2}-x^{4}$
A function $f(x)$ is even if it satisfies

$$
f(-x)=f(x)
$$

A function $f(x)$ is odd if it satisfies

$$
f(-x)=-f(x)
$$

Examples: Even, odd, or neither?

(a)

(c)

(b)

(d) $f(x)=\frac{x^{3}+x}{x+\frac{1}{x}}$
(for this one:
actually plug in $-x$ and see what happens algebraically)

A graph is a graph of a function if for every x in its domain, there is exactly one y on the graph which is mapped to by that x :

Function:

Not a function:

A graph is a graph of a function if for every x in its domain, there is exactly one y on the graph which is mapped to by that x :

Function:

Not a function:

A function is additionally one-to-one if for every y, there is at most one x which maps to that y.
A 1-to-1 functions:

Function that's not 1-to-1:

