## Arc length 11/18/2011

Suppose you want to know what the length of a curve $y=f(x)$ is from the point $(a, f(a))$ to the point $(b, f(b))$ :


Slice!

$$
\begin{gathered}
\ell=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\Delta \ell)_{i}=\int_{x=a}^{x=b} d \ell \\
d \ell=\sqrt{d x^{2}+d y^{2}}
\end{gathered}
$$



Let $n$ go to $\infty$

dx

Manipulating into something we can actually calculate...


Remember, $y=f(x)$.

$$
\begin{aligned}
d \ell=\sqrt{d x^{2}+d y^{2}} & =\sqrt{d x^{2}+d y^{2}} \frac{d x}{d x} \\
& =\sqrt{\frac{d x^{2}+d y^{2}}{d x^{2}}} d x=\sqrt{\frac{d x^{2}}{d x^{2}}+\frac{d y^{2}}{d x^{2}}} d x \\
& =\sqrt{\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \\
\text { So } \quad \ell & =\int_{x=a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
\end{aligned}
$$

## Example

Find the length of the arc $y=x^{3 / 2}$, from $x=0$ to $x=1$.


Find the length of the curve $y=x^{4}+\frac{1}{32 x^{2}}$ from $x=1$ to $x=2$.


$$
f(x)=x^{4}+\frac{1}{32} x^{-2} \Longrightarrow f^{\prime}(x)=4 x^{3}-\frac{1}{16} x^{-3}=\frac{64 x^{6}-1}{16 x^{3}}
$$

Keeping the algebra tame:
Let $A=(2 x)^{3}=8 x^{3}$ and so $A^{2}=64 x^{6}$, and $f^{\prime}(x)=\frac{A^{2}-1}{2 A}$.
So
$1+\left(f^{\prime}(x)\right)^{2}=1+\left(\frac{A^{2}-1}{2 A}\right)^{2}$

Most of the time, the resulting integral is "hard" (not elementary)

Set up (but do not integrate) the integrals which compute the length of the following functions:

1. $f(x)=x^{2}$ from $x=-3$ to 2
2. $f(x)=x^{2}+5$ from $x=-3$ to 2
3. $f(x)=-x^{2}+\pi$ from $x=-3$ to 2
4. $f(x)=\sin (x)$ from $x=0$ to $\frac{\pi}{2}$
5. $f(x)=e^{x}$ from $x=0$ to 1
6. $f(x)=\sqrt{1-x^{2}}$ from $x=-1$ to 1
