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Manipulating into something we can actually calculate...
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Example

Find the length of the arc y = x

3/2
, from x = 0 to x = 1.
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Most of the time,

the resulting integral is “hard” (not elementary)

Set up (but do not integrate) the integrals which compute the

length of the following functions:

1. f (x) = x

2

from x = �3 to 2

2. f (x) = x

2

+ 5 from x = �3 to 2

3. f (x) = �x

2

+ ⇡ from x = �3 to 2

4. f (x) = sin(x) from x = 0 to

⇡
2

5. f (x) = e

x

from x = 0 to 1

6. f (x) =

p
1� x

2

from x = �1 to 1


