Numerical integration example

The probability that someone's IQ falls between a and b is given by the area under the curve

$$D(x) = \frac{1}{15\sqrt{2\pi}} e^{-\frac{(x-100)^2}{2*(15)^2}}$$

(this is the normal distribution with average 100 and standard deviation 15)

Numerical integration example

The probability that someone's IQ falls between a and b is given by the area under the curve

$$D(x) = \frac{1}{15\sqrt{2\pi}} e^{-\frac{(x-100)^2}{2*(15)^2}}$$

(this is the normal distribution with average 100 and standard deviation 15)

If someone has an IQ of A, they're approximately in the percentile:

$$\int_0^A D(x) dx$$
$$(\int_{-\infty}^0 D(x) dx \approx 0)$$

A.
$$\int_0^{130} \frac{1}{15\sqrt{2\pi}} e^{-\frac{(x-100)^2}{2*(15)^2}} dx$$

A.
$$\int_0^{130} \frac{1}{15\sqrt{2\pi}} e^{-\frac{(x-100)^2}{2*(15)^2}} dx \approx 96.665\%$$

Trapezoids with n = 8:

A.
$$\int_0^{130} \frac{1}{15\sqrt{2\pi}} e^{-\frac{(x-100)^2}{2*(15)^2}} dx \approx 96.667\%$$

Simpsons with n = 8:

How good are these estimates?

The error for each of these estimates can be bounded! Suppose you have approximated $\int_{a}^{b} f(x) dx...$

For **Trapezoids**, the error is bounded in terms of the second derivative of the function.

For **Simpson's rule**, the error is bounded in terms of the fourth derivative of the function.

How good are these estimates?

The error for each of these estimates can be bounded! Suppose you have approximated $\int_{a}^{b} f(x) dx...$

For **Trapezoids**, the error is bounded in terms of the second derivative of the function.

$$\operatorname{error}(n \operatorname{Trapezoids}) \leq M_2(b-a)^3/12 * n^2$$

where M_2 is the maximum value of f''(x) over the interval [a, b]

For **Simpson's rule**, the error is bounded in terms of the fourth derivative of the function.

error(*n* subintervals, i.e. $\frac{n}{2}$ parabolas) $\leq M_4(b-a)^5/180*n^4$

where M_4 is the maximum value of $f^{(4)}(x)$ over the interval [a, b]

$$f(x) = \frac{1}{15\sqrt{2\pi}} e^{-\frac{(x-100)^2}{2*(15)^2}}$$

$$f''(x) = Ke^{-1/450(x-100)^2} (x^2 - 200x + 9775), \quad \text{where } \kappa = \frac{1}{759375\sqrt{2\pi}}$$

 $M_2 = 0.00005275$

$$f(x) = \frac{1}{15\sqrt{2\pi}} e^{-\frac{(x-100)^2}{2*(15)^2}}$$

$$f''(x) = Ke^{-1/450(x-100)^2} (x^2 - 200x + 9775), \quad \text{where } \kappa = \frac{1}{759375\sqrt{2\pi}}$$

 $M_2 = 0.00005275$

So, the error in the Trapezoid approximation of

$$\int_0^{130} \frac{1}{15\sqrt{2\pi}} e^{-\frac{(x-100)^2}{2*(15)^2}} dx$$

with 8 trapezoids can't be any larger than

$$0.00005275 * 130^3 / (12 * 8^2) \approx 0.1509$$

 $M_4 = 0.000001576$

So, the error in the Simpson's approximation of

$$\int_0^{130} \frac{1}{15\sqrt{2\pi}} e^{-\frac{(x-100)^2}{2*(15)^2}} dx$$

with 8 subintervals, i.e. 4 parabolas, can't be any larger than

 $0.000001576 * 130^5 / (180 * 8^4) \approx 0.07937$

Suppose we approximated $\int_0^5 \ln(x+1) dx$ using

- (a) Trapezoids with n = 3, and
- (b) Simpson's rule with n = 2.

Which is guaranteed to be the better approximation?

Suppose we approximated $\int_0^5 \ln(x+1) dx$ using

- (a) Trapezoids with n = 3, and
- (b) Simpson's rule with n = 2.

Which is guaranteed to be the better approximation?

Strategy:

- 1. Calculate the second and fourth derivatives of f(x).
- 2. Maximize f''(x) over the interval [0,5]. Call its maximum value M_2 .
- 3. Plug M_2 , (b-a) and n into the error bound formula for Trapezoids.
- 4. Maximize $f^{(4)}(x)$ over the interval [0, 5]. Call its maximum value M_4 .
- 5. Plug M_4 , (b-a) and n into the error bound formula Simpson's rule.
- 6. Compare.

Area between curves

11/16/2011

We know that if f is a continuous nonnegative function on the interval [a, b], then $\int_a^b f(x) dx$ is the area under the graph of f and above the interval.

Now suppose we are given two continuous functions, f(x) and g(x) so that $g(x) \le f(x)$ for all x in the interval [a, b].

How do we find the area bounded by the two functions over that interval?

f = top function

g = bottom function

Area between f and
$$g = \int_a^b f(x)dx - \int_a^b g(x)dx = \int_a^b f(x) - g(x)dx$$

So Area =
$$\int_0^1 x^2 - x^3 dx$$

So Area =
$$\int_0^1 x^2 - x^3 dx = \frac{1}{3}x^3 - \frac{1}{4}x^4\Big|_{x=0}^1 = \boxed{\left(\frac{1}{3} - \frac{1}{4}\right) - 0} > 0\checkmark$$

Find the area of the region between $y = e^x$ and y = 1/(1 + x) on the interval [0, 1].

- 1. Check for intersection points (verify algebraically that x = 0 is the only intersection by setting $e^x = \frac{1}{x+1}$).
- 2. Decide which function is on top (f(x)) and which function is on bottom (g(x)).
- 3. Calculate $\int_0^1 f(x) g(x) dx$.

Check: What if you get a negative answer?

Find the area of the region bounded by $y = x^2 - 2x$ and $y = 4 - x^2$.

- 1. Check for intersection points (Solve $x^2 2x = 4 x^2$). There will be two, *a* and *b*; this is where the functions cross.
- 2. Between this two points, which function is on top (f(x)) and which function is on bottom (g(x)).

3. Calculate
$$\int_a^b f(x) - g(x) dx$$
.

Check: What if you get a negative answer?

Find the area of the region bounded by $y = x^2 - 2x$ and $y = 4 - x^2$.

- 1. Check for intersection points (Solve $x^2 2x = 4 x^2$). There will be two, *a* and *b*; this is where the functions cross.
- 2. Between this two points, which function is on top (f(x)) and which function is on bottom (g(x)).

3. Calculate
$$\int_a^b f(x) - g(x) dx$$
.

Check: What if you get a negative answer?

Find the area of the region bounded by the two curves $y = x^3 - 9x$ and $y = 9 - x^2$.

1. Check for intersection points (Solve $x^3 - 9x = 9 - x^2$).

Find the area of the region bounded by the two curves $y = x^3 - 9x$ and $y = 9 - x^2$.

1. Check for intersection points (Solve $x^3 - 9x = 9 - x^2$).

Find the area of the region bounded by the two curves $y = x^3 - 9x$ and $y = 9 - x^2$.

1. Check for intersection points (Solve $x^3 - 9x = 9 - x^2$).

2. Area = Area A + Area B

Find the area of the region bounded by the two curves $y = x^3 - 9x$ and $y = 9 - x^2$.

1. Check for intersection points (Solve $x^3 - 9x = 9 - x^2$).

2. Area = Area A + Area B

Area A =
$$\int_{-3}^{-1} (x^3 - 9x) - (9 - x^2) dx = \int_{-3}^{-1} x^3 + x^2 - 9x - 9 dx$$

Find the area of the region bounded by the two curves $y = x^3 - 9x$ and $y = 9 - x^2$.

1. Check for intersection points (Solve $x^3 - 9x = 9 - x^2$).

2. Area = Area A + Area B

Area A =
$$\int_{-3}^{-1} (x^3 - 9x) - (9 - x^2) dx = \int_{-3}^{-1} x^3 + x^2 - 9x - 9 dx$$

Area B = $\int_{-1}^{3} (9-x^2) - (x^3 - 9x) dx = -\int_{-1}^{3} x^3 + x^2 - 9x - 9 dx$

Find the area between sin x and cos x on $[-3\pi/4, 5\pi/4]$.

Functions of y

We could just as well consider two functions of y, say, $x = f_{Left}(y)$ and $x = g_{Right}(y)$ defined on the interval [c, d].

Area Between the Two Curves

Find the area under the graph of $y = \ln x$ and above the interval [1, e] on the x-axis.

Area Between the Two Curves

Find the area under the graph of $y = \ln x$ and above the interval [1, e] on the x-axis.

