
Numerical integration example
The probability that someone’s IQ falls between a and b is given by
the area under the curve

D(x) =
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p
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(this is the normal distribution with average 100 and standard deviation 15)
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If someone has an IQ of A, they’re approximately in the percentile:

Z
A

0
D(x)dx

(
R 0
�1 D(x)dx ⇡ 0)



Numerical integration example
The probability that someone’s IQ falls between a and b is given by
the area under the curve

D(x) =
1

15
p
2⇡

e

� (x�100)2

2⇤(15)2

(this is the normal distribution with average 100 and standard deviation 15)

100

0.02

A

If someone has an IQ of A, they’re approximately in the percentile:

Z
A

0
D(x)dx

(
R 0
�1 D(x)dx ⇡ 0)



Q. If you have an IQ of 130, what percentile are you in?

A.

Z 130

0

1

15
p
2⇡

e

� (x�100)2

2⇤(15)2
dx



Q. If you have an IQ of 130, what percentile are you in?

A.

Z 130

0

1

15
p
2⇡

e

� (x�100)2

2⇤(15)2
dx

100

0.02

130



Q. If you have an IQ of 130, what percentile are you in?

A.

Z 130

0

1

15
p
2⇡

e

� (x�100)2

2⇤(15)2
dx ⇡ 96.665%

Trapezoids with n = 8:



Q. If you have an IQ of 130, what percentile are you in?

A.

Z 130

0

1

15
p
2⇡

e

� (x�100)2

2⇤(15)2
dx ⇡ 96.667%

Simpsons with n = 8:



How good are these estimates?

The error for each of these estimates can be bounded!
Suppose you have approximated

R
b

a

f (x) dx ....

For Trapezoids, the error is bounded in terms of the second
derivative of the function.

error(n Trapezoids)  M2(b � a)3/12 ⇤ n2

where M2 is the maximum value of f 00(x) over the interval [a, b]

For Simpson’s rule, the error is bounded in terms of the fourth
derivative of the function.

error(n subintervals, i.e. n

2 parabolas)  M4(b � a)5/180 ⇤ n4

where M4 is the maximum value of f (4)(x) over the interval [a, b]
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Example

Suppose we approximated
R 5
0 ln(x + 1) dx using

(a) Trapezoids with n = 3, and

(b) Simpson’s rule with n = 2.

Which is guaranteed to be the better approximation?

Strategy:

1. Calculate the second and fourth derivatives of f (x).

2. Maximize f

00(x) over the interval [0, 5]. Call its maximum value M2.

3. Plug M2, (b� a) and n into the error bound formula for Trapezoids.

4. Maximize f

(4)(x) over the interval [0, 5].
Call its maximum value M4.

5. Plug M4, (b� a) and n into the error bound formula Simpson’s rule.

6. Compare.
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Areas Between Curves

We know that if f is a continuous nonnegative function on the
interval [a, b], then

R
b

a

f (x)dx is the area under the graph of f and
above the interval.

Now suppose we are given two continuous functions, f (x) and
g(x) so that g(x)  f (x) for all x in the interval [a, b].

How do we find the area bounded by the two functions over that
interval?
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Example
Find the area of the region between the graphs of y = x

2 and
y = x

3 for 0  x  1.
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Example
Find the area of the region between y = e

x and y = 1/(1 + x) on
the interval [0, 1].

1

1

2

1. Check for intersection points (verify algebraically that x = 0 is
the only intersection by setting e

x = 1
x+1).

2. Decide which function is on top (f (x)) and which function is
on bottom (g(x)).

3. Calculate
R 1
0 f (x)� g(x)dx .

Check: What if you get a negative answer?



Example
Find the area of the region bounded by y = x

2 � 2x and
y = 4� x

2.

1. Check for intersection points (Solve x

2 � 2x = 4� x

2). There
will be two, a and b; this is where the functions cross.

2. Between this two points, which function is on top (f (x)) and
which function is on bottom (g(x)).

3. Calculate
R
b
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Example
Find the area of the region bounded by the two curves y = x

3 � 9x
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Example

Find the area between sin x and cos x on [�3⇡/4, 5⇡/4].
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sin(x)cos(x)
A B



Functions of y

We could just as well consider two functions of y , say, x = f

Left

(y)
and x = g

Right

(y) defined on the interval [c , d ].



Area Between the Two Curves

Find the area under the graph of y = ln x and above the interval
[1, e] on the x-axis.
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[1, e] on the x-axis.

0 1 2 3

1

2

3

y

x

y=ln(x)

x=e

0 1 2 3

1

2

3

y

x

x=e^y

x=e


