Numerical integration example

The probability that someone's IQ falls between a and b is given by the area under the curve

$$
D(x)=\frac{1}{15 \sqrt{2 \pi}} e^{-\frac{(x-100)^{2}}{2 *(15)^{2}}}
$$

(this is the normal distribution with average 100 and standard deviation 15)

Numerical integration example

The probability that someone's IQ falls between a and b is given by the area under the curve

$$
D(x)=\frac{1}{15 \sqrt{2 \pi}} e^{-\frac{(x-100)^{2}}{2 *(15)^{2}}}
$$

(this is the normal distribution with average 100 and standard deviation 15)

If someone has an IQ of A, they're approximately in the percentile:

$$
\begin{gathered}
\int_{0}^{A} D(x) d x \\
\left(\int_{-\infty}^{0} D(x) d x \approx 0\right)
\end{gathered}
$$

Q. If you have an IQ of 130 , what percentile are you in?
Q. If you have an IQ of 130 , what percentile are you in?
A. $\int_{0}^{130} \frac{1}{15 \sqrt{2 \pi}} e^{-\frac{(x-100)^{2}}{2 *(15)^{2}}} d x$

Q. If you have an IQ of 130 , what percentile are you in?
A. $\int_{0}^{130} \frac{1}{15 \sqrt{2 \pi}} e^{-\frac{(x-100)^{2}}{2 *(15)^{2}}} d x \approx 96.665 \%$

Trapezoids with $n=8$:

Q. If you have an IQ of 130 , what percentile are you in?
A. $\int_{0}^{130} \frac{1}{15 \sqrt{2 \pi}} e^{-\frac{(x-100)^{2}}{2 *(15)^{2}}} d x \approx 96.667 \%$

Simpsons with $n=8$:

How good are these estimates?

The error for each of these estimates can be bounded!
Suppose you have approximated $\int_{a}^{b} f(x) d x \ldots$.
For Trapezoids, the error is bounded in terms of the second derivative of the function.

For Simpson's rule, the error is bounded in terms of the fourth derivative of the function.

How good are these estimates?

The error for each of these estimates can be bounded!
Suppose you have approximated $\int_{a}^{b} f(x) d x \ldots$
For Trapezoids, the error is bounded in terms of the second derivative of the function.

$$
\operatorname{error}(n \text { Trapezoids }) \leq M_{2}(b-a)^{3} / 12 * n^{2}
$$

where M_{2} is the maximum value of $f^{\prime \prime}(x)$ over the interval $[a, b]$
For Simpson's rule, the error is bounded in terms of the fourth derivative of the function.

$$
\operatorname{error}\left(n \text { subintervals, i.e. } \frac{n}{2} \text { parabolas }\right) \leq M_{4}(b-a)^{5} / 180 * n^{4}
$$

where M_{4} is the maximum value of $f^{(4)}(x)$ over the interval $[a, b]$

$$
\begin{aligned}
& f(x)=\frac{1}{15 \sqrt{2 \pi}} e^{-\frac{(x-100)^{2}}{2 \times(15)^{2}}} \\
& f^{\prime \prime}(x)=K e^{-1 / 450(x-100)^{2}}\left(x^{2}-200 x+9775\right), \quad \text { where } K=\frac{1}{259375 \sqrt{2 \pi}}
\end{aligned}
$$

$M_{2}=0.00005275$

$$
\begin{aligned}
f(x)=\frac{1}{15 \sqrt{2 \pi}} e^{-\frac{(x-100)^{2}}{2 *(15)^{2}}} \\
f^{\prime \prime}(x)=K e^{-1 / 450(x-100)^{2}}\left(x^{2}-200 x+9775\right), \quad \text { where } K=\frac{1}{759375 \sqrt{2 \pi}}
\end{aligned}
$$

$$
M_{2}=0.00005275
$$

So, the error in the Trapezoid approximation of

$$
\int_{0}^{130} \frac{1}{15 \sqrt{2 \pi}} e^{-\frac{(x-100)^{2}}{2 *(15)^{2}}} d x
$$

with 8 trapezoids can't be any larger than

$$
0.00005275 * 130^{3} /\left(12 * 8^{2}\right) \approx 0.1509
$$

$$
\begin{gathered}
f(x)=\frac{1}{15 \sqrt{2 \pi}} e^{-\frac{(x-100)^{2}}{2 *(15)^{2}}} \\
f^{(4)}(x)=K e^{-1 / 450(x-100)^{2}}\left(86651875-3730000 x+58650 x^{2}-400 x^{3}+x^{4}\right), \\
\text { where } K=\frac{1}{3844359375 \sqrt{2 \pi}}
\end{gathered}
$$

$$
M_{4}=0.000001576
$$

$$
\begin{gathered}
f(x)=\frac{1}{15 \sqrt{2 \pi}} e^{-\frac{(x-100)^{2}}{2 *(15)^{2}}} \\
f^{(4)}(x)=K e^{-1 / 450(x-100)^{2}}\left(86651875-3730000 x+58650 x^{2}-400 x^{3}+x^{4}\right), \\
\text { where } K=\frac{1}{3844359375 \sqrt{2 \pi}}
\end{gathered}
$$

$$
M_{4}=0.000001576
$$

So, the error in the Simpson's approximation of

$$
\int_{0}^{130} \frac{1}{15 \sqrt{2 \pi}} e^{-\frac{(x-100)^{2}}{2 *(15)^{2}}} d x
$$

with 8 subintervals, i.e. 4 parabolas, can't be any larger than

$$
0.000001576 * 130^{5} /\left(180 * 8^{4}\right) \approx 0.07937
$$

Example

Suppose we approximated $\int_{0}^{5} \ln (x+1) d x$ using
(a) Trapezoids with $n=3$, and
(b) Simpson's rule with $n=2$.

Which is guaranteed to be the better approximation?

Example

Suppose we approximated $\int_{0}^{5} \ln (x+1) d x$ using
(a) Trapezoids with $n=3$, and
(b) Simpson's rule with $n=2$.

Which is guaranteed to be the better approximation?

Strategy:

1. Calculate the second and fourth derivatives of $f(x)$.
2. Maximize $f^{\prime \prime}(x)$ over the interval $[0,5]$. Call its maximum value M_{2}.
3. Plug $M_{2},(b-a)$ and n into the error bound formula for Trapezoids.
4. Maximize $f^{(4)}(x)$ over the interval $[0,5]$. Call its maximum value M_{4}.
5. Plug $M_{4},(b-a)$ and n into the error bound formula Simpson's rule.
6. Compare.

Area between curves

11/16/2011

Areas Between Curves

We know that if f is a continuous nonnegative function on the interval $[a, b]$, then $\int_{a}^{b} f(x) d x$ is the area under the graph of f and above the interval.

Now suppose we are given two continuous functions, $f(x)$ and $g(x)$ so that $g(x) \leq f(x)$ for all x in the interval $[a, b]$.

How do we find the area bounded by the two functions over that interval?
$f=$ top function
$g=$ bottom function

Area between f and $g=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)-g(x) d x$

$\mathrm{f}=$ top function
 $g=$ bottom function

Area between f and $g=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)-g(x) d x$

f $=$ top function
$g=$ bottom function

Area between f and $g=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)-g(x) d x$

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Intersections: where does $x^{2}=x^{3}$?

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Intersections: where does $x^{2}=x^{3} ? x=0$ or 1

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Top: $x^{2} \quad$ Bottom: x^{3}
Intersections: where does $x^{2}=x^{3}$? $x=0$ or 1

So \quad Area $=\int_{0}^{1} x^{2}-x^{3} d x$

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Top: $x^{2} \quad$ Bottom: x^{3}
Intersections: where does $x^{2}=x^{3}$? $x=0$ or 1

So \quad Area $=\int_{0}^{1} x^{2}-x^{3} d x=\frac{1}{3} x^{3}-\left.\frac{1}{4} x^{4}\right|_{x=0} ^{1}=\left(\frac{1}{3}-\frac{1}{4}\right)-0>0 \checkmark$

Example

Find the area of the region between $y=e^{x}$ and $y=1 /(1+x)$ on the interval $[0,1]$.

1. Check for intersection points (verify algebraically that $x=0$ is the only intersection by setting $e^{x}=\frac{1}{x+1}$).
2. Decide which function is on top $(f(x))$ and which function is on bottom $(g(x))$.
3. Calculate $\int_{0}^{1} f(x)-g(x) d x$.

Check: What if you get a negative answer?

Example

Find the area of the region bounded by $y=x^{2}-2 x$ and $y=4-x^{2}$.

1. Check for intersection points (Solve $x^{2}-2 x=4-x^{2}$). There will be two, a and b; this is where the functions cross.
2. Between this two points, which function is on top $(f(x))$ and which function is on bottom $(g(x))$.
3. Calculate $\int_{a}^{b} f(x)-g(x) d x$.

Check: What if you get a negative answer?

Example

Find the area of the region bounded by $y=x^{2}-2 x$ and $y=4-x^{2}$.

1. Check for intersection points (Solve $x^{2}-2 x=4-x^{2}$). There will be two, a and b; this is where the functions cross.
2. Between this two points, which function is on top $(f(x))$ and which function is on bottom $(g(x))$.
3. Calculate $\int_{a}^{b} f(x)-g(x) d x$.

Check: What if you get a negative answer?

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

2. Area $=$ Area $A+$ Area B

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

2. Area $=$ Area $A+$ Area B

$$
\text { Area } \mathrm{A}=\int_{-3}^{-1}\left(x^{3}-9 x\right)-\left(9-x^{2}\right) d x=\int_{-3}^{-1} x^{3}+x^{2}-9 x-9 d x
$$

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

2. Area $=$ Area $A+$ Area B

Area $\mathrm{A}=\int_{-3}^{-1}\left(x^{3}-9 x\right)-\left(9-x^{2}\right) d x=\int_{-3}^{-1} x^{3}+x^{2}-9 x-9 d x$ Area $\mathrm{B}=\int_{-1}^{3}\left(9-x^{2}\right)-\left(x^{3}-9 x\right) d x=-\int_{-1}^{3} x^{3}+x^{2}-9 x-9 d x$

Example

Find the area between $\sin x$ and $\cos x$ on $[-3 \pi / 4,5 \pi / 4]$.

Functions of y

We could just as well consider two functions of y, say, $x=f_{\text {Left }}(y)$ and $x=g_{\text {Right }}(y)$ defined on the interval $[c, d]$.

Area Between the Two Curves

Find the area under the graph of $y=\ln x$ and above the interval [$1, e$] on the x-axis.

Area Between the Two Curves

Find the area under the graph of $y=\ln x$ and above the interval [$1, e$] on the x-axis.

