The FUNDAMENTAL Theorem of Calculus (yay!)

11/11/11
(also yay!)

Warm-up

Suppose a particle is traveling at velocity $v(t)=t^{2}$ from $t=1$ to $t=2$. if the particle starts at $y(0)=y_{0}$,

1. what is the function $y(t)$ which gives the particles position as a function of time (will have a y_{0} in it)?
2. how far does the particle travel from $t=1$ to $t=2$?

Compare your answer to the upper and lower estimates of the area under the curve $f(x)=x^{2}$ from $x=1$ to $x=2$:

$$
\begin{gathered}
\text { Upper } U(f, P) \\
\sum_{i=1}^{n}\left(1+\frac{i}{n}\right) *\left(\frac{1}{n}\right) \\
\\
\begin{array}{c|c|c}
n-1 & \sum_{i=0}^{n-1}\left(1+\frac{i}{n}\right) *\left(\frac{1}{n}\right) \\
\hline 10 & 2.485 & 2.185 \\
100 & 2.34835 & 2.31835 \\
1000 & 2.33483 & 2.33183
\end{array}
\end{gathered}
$$

The Fundamental Theorem of Calculus

Theorem (the baby case)

If $F(x)$ is any function satisfying $\frac{d}{d x} F(x)=f(x)$, then

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{x=a} ^{b}=F(b)-F(a)
$$

Q. What is $\int_{1}^{2} x^{2} d x$?
A. $F(x)=\frac{x^{3}}{3}$

So

$$
\begin{aligned}
\int_{1}^{2} x^{2} d x & =\left.\frac{x^{3}}{3}\right|_{x=1} ^{2}=\left(\frac{2^{3}}{3}\right)-\left(\frac{1^{3}}{3}\right) \\
& =\frac{8}{3}-\frac{1}{3}=\frac{7}{3} \approx 2.333 \quad \text { (same answer!) }
\end{aligned}
$$

Examples

Use the fundamental theorem of calculus,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

to calculate

1. $\int_{2}^{3} 3 x d x$
2. $\int_{-1}^{1} x^{3} d x$
3. $\int_{0}^{\pi} \sin (x) d x$
4. $\int_{\pi}^{0} \sin (x) d x$

The Fundamental Theorem of Calculus

Theorem (the big case)

If $F(x)$ is any function satisfying $\frac{d}{d t} F(t)=f(t)$, then

$$
\int_{a}(x)^{b}(x) f(t) d t=\left.F(t)\right|_{t=a(x)} ^{b(x)}=F(b(x))-F(a(x))
$$

Q. What is $\int_{\sin (x)}^{\ln (x)} t^{2} d t$?
A. $F(t)=\frac{1}{3} t^{3}$.

So

$$
\int_{\sin (x)}^{\ln (x)} t^{2} d t=\left.\frac{1}{3} t^{3}\right|_{t=\sin (x)} ^{\ln (x)}=\left(\frac{1}{3}(\ln (x))^{3}\right)-\left(\frac{1}{3}(\sin (x))^{3}\right) .
$$

Examples

Use the fundamental theorem of calculus,

$$
\int_{a(x)}^{b(x)} f(t) d t=F(b(x))-F(a(x))
$$

to calculate

1. $\int_{\sin (x)}^{\cos (x)} 3 t d t$
2. $\int_{x+1}^{5 x^{2}-3} t^{3} d t$
3. $\int_{\arccos (x)}^{0} \sin (t) d t$

For reference, we calculated $\int_{a(x)}^{\ln (x)} f(t) d t$ where

$$
f(t)=t^{2} \quad a(x)=\sin (x) \quad b(x)=\ln (x)
$$

Notice:

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{3}(\ln (x))^{3}-\frac{1}{3}(\sin (x))^{3}\right) & =\frac{1}{x}(\ln (x))^{2}-\cos (x)(\sin (x))^{2} \\
& =b^{\prime}(x) f(b(x))-a^{\prime}(x) f(a(x))
\end{aligned}
$$

In general:

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(t) d t=b^{\prime}(x) f(b(x))-a^{\prime}(x) f(a(x))
$$

(Don't even have to know $F(t)$!)

Why?

Example: Calculate $\frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t$.
Answer: We can't even calculate $\int e^{t^{2}} d t$!
(There is no elementary function $F(t)$ which satisfies $F^{\prime}(t)=e^{t^{2}}$)
But we know $\int e^{t^{2}} d t$ is a function. Call it $F(t)$.
So $\int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t=F(\sin (x))-F(\tan (x))$.

Therefore $\frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t=\frac{d}{d x}(F(\sin (x))-F(\tan (x)))$

$$
\begin{aligned}
& =\cos (x) F^{\prime}(\sin (x))-\sec ^{2}(x) F^{\prime}(\tan (x)) \\
& =\cos (x) f(\sin (x))-\sec ^{2}(x) f(\tan (x)) \\
& =\cos (x) e^{(\sin (x))^{2}}-\sec ^{2}(x) e^{(\tan (x))^{2}}
\end{aligned}
$$

Part 2: Integration by substitution

Warmup

Fill in the blank:

1. Since $\frac{d}{d x} \cos \left(x^{2}+1\right)=$

$$
\text { so } \int \quad d x=\cos \left(x^{2}+1\right)+C
$$

2. Since $\frac{d}{d x} \ln |\cos (x)|=$

$$
\text { so } \int \quad d x=\ln |\cos (x)|+C
$$

(Example: $\frac{d}{d x} x^{3} d x=3 x^{2}$, so $\int 3 x^{2} d x=x^{3}+$ C.)

Undoing chain rule

In general:

$$
\begin{gathered}
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) * g^{\prime}(x) \\
\text { so } \quad \int f^{\prime}(g(x)) * g^{\prime}(x) d x=f(g(x))+C
\end{gathered}
$$

Example: Calculate the (extremely suggestively written) integral
$\int \cos \left(x^{3}+5 x-10\right) *\left(3 x^{2}+5 * 1+0\right) d x$

Less obvious chain rules.

Look for a buried function $g(x)$ and it's derivative $g^{\prime}(x)$ which can be paired with $d x$:

Examples:

$$
\begin{aligned}
\int \frac{\cos (x)}{\sin (x)+1} d x & =\int \frac{1}{\sin (x)+1} * \cos (x) d x \\
\int x \sqrt{x^{2}+1} d x & =\int \frac{1}{2} \sqrt{x^{2}+1} * 2 x d x \\
\int \frac{\cos (\sqrt{x})}{2 \sqrt{x}} d x & =\int \cos (\sqrt{x}) * \frac{1}{2 \sqrt{x}} d x
\end{aligned}
$$

Method of Substitution

Look for a buried function $g(x)$ and it's derivative $g^{\prime}(x)$ which can be paired with $d x$.

$$
\text { Example: } \int \frac{\cos (x)}{\sin (x)+1} d x
$$

Let $u=g(x)$.

$$
\text { Let } u=\sin (x)+1
$$

Calculate $d u$.

$$
\frac{d u}{d x}=\cos (x) \text { so } d u=\cos (x) d x
$$

Clear out all of the x 's, replacing them with u 's.
$\int \frac{1}{u} d u$
Calculate the new integral. $\quad \int \frac{1}{u} d u=\ln |u|+C$
Substitute back into x 's. $\quad \ln |u|+C=\ln |\sin (x)+1|+C$
Check $\frac{d}{d x} \ln |\sin (x)+1|+C=\frac{1}{\sin (x)+1} * \cos (x) \checkmark$

Method of Substitution

Look for a buried function $g(x)$ and it's derivative $g^{\prime}(x)$ which can be paired with $d x$.

$$
\text { Example: } \int x \sqrt{x^{2}+1} d x
$$

Let $u=g(x)$.

$$
\text { Let } u=x^{2}+1
$$

Calculate $c * d u$.

$$
\frac{d u}{d x}=2 x \text { so } \frac{1}{2} d u=x d x
$$

Clear out all of the x 's, replacing them with u 's.

$$
\int \sqrt{u} * \frac{1}{2} d u
$$

Calculate the new integral. $\quad \frac{1}{2} \int u^{1 / 2} d u=\frac{1}{2}\left(\frac{2}{3} u^{3 / 2}\right)+C$
Substitute back into x 's. $\quad=\frac{1}{3}\left(x^{2}+1\right)^{3 / 2}+C$
Check $\frac{d}{d x} \frac{1}{3}\left(x^{2}+1\right)^{3 / 2}+C=\frac{1}{3} \frac{3}{2}\left(x^{2}+1\right)^{1 / 2} * 2 x \checkmark$

Give it a try:

Look for a buried function $g(x)$ and it's derivative $g^{\prime}(x)$ which can be paired with $d x$.

$$
\text { Example: } \int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x
$$

Let $u=g(x)$.
Calculate $c * d u$.

Clear out all of the x 's, replacing them with u 's.

Calculate the new integral.

Substitute back into x 's.

