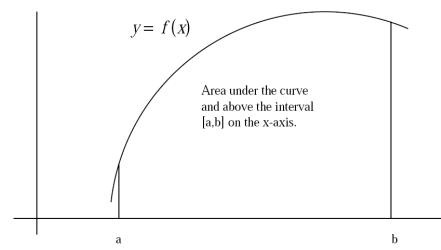
The Definite Integral

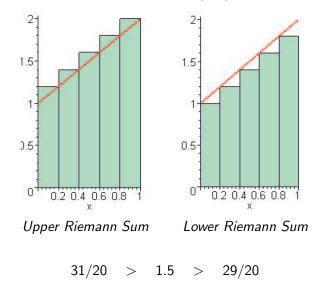
11/08/2005

The Area Problem



Upper and Lower Sums

Suppose we want to use rectangles to approximate the area under the graph of y = x + 1 on the interval [0, 1].



As you take more and more smaller and smaller rectangles, if f is nice, both of these will approach the real area.

n	U	L
100	1.505000000	1.495000000
150	1.503333333	1.496666667
200	1.502500000	1.497500000
300	1.501666667	1.498333333
500	1.501000000	1.499000000

In general: finding the Area Under a Curve

1. Let y = f(x) be given and defined on an interval [a, b]. Subdivide the interval [a, b] into *n* pieces. Label the endpoints:

$$a = x_0 \leq x_1 \leq x_2 \leq \cdots \leq x_n = b.$$

Define $P = \{x_0, x_1, x_2, ..., x_n\}.$

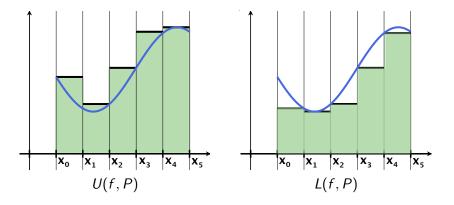
- 2. Let $\Delta x_i = x_i x_{i-1}$ be the width of the *i*th interval, $1 \le i \le n$.
- 3. Form the Upper Riemann Sum U(f, P): let M_i be the maximum value of the function on that i^{th} interval, so

$$U(f,P) = M_1 \Delta x_1 + M_2 \Delta x_2 + \cdots + M_n \Delta x_n$$

4. Form the Lower Riemann Sum L(f, P): let m_i be the minimum value of the function on that i^{th} interval, so

$$L(f,P)=m_1\Delta x_1+m_2\Delta x_2+\cdots+m_n\Delta x_n.$$

5. Take the limit as $n \to \infty$ and the maximum $\Delta x_i \to 0$.



Sigma Notation

If *m* and *n* are integers with $m \le n$, and if *f* is a function defined on the integers from *m* to *n*, then the symbol $\sum_{i=m}^{n} f(i)$, called

sigma notation, is means

$$\sum_{i=m}^{n} f(i) = f(m) + f(m+1) + f(m+2) + \dots + f(n)$$

Sigma Notation

If *m* and *n* are integers with $m \le n$, and if *f* is a function defined on the integers from *m* to *n*, then the symbol $\sum_{i=m}^{n} f(i)$, called

sigma notation, is means

$$\sum_{i=m}^{n} f(i) = f(m) + f(m+1) + f(m+2) + \dots + f(n)$$

Examples:
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n$$
$$\sum_{i=1}^{n} i^{2} = 1^{2} + 2^{2} + 3^{2} + \dots + n^{2}$$
$$\sum_{i=1}^{n} \sin(i) = \sin(1) + \sin(2) + \sin(3) + \dots + \sin(n)$$
$$\sum_{i=0}^{n-1} x^{i} = x^{0} + x + x^{2} + x^{2} + x^{3} + x^{4} + \dots + x^{n-1}$$

Sigma Notation

If *m* and *n* are integers with $m \le n$, and if *f* is a function defined on the integers from *m* to *n*, then the symbol $\sum_{i=m}^{n} f(i)$, called

sigma notation, is means

$$\sum_{i=m}^{n} f(i) = f(m) + f(m+1) + f(m+2) + \dots + f(n)$$

Examples:

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n$$

$$\sum_{i=1}^{n} i^{2} = 1^{2} + 2^{2} + 3^{2} + \dots + n^{2}$$

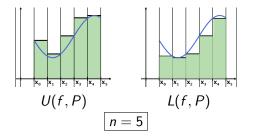
$$\sum_{i=1}^{n} \sin(i) = \sin(1) + \sin(2) + \sin(3) + \dots + \sin(n)$$

$$\sum_{i=0}^{n-1} x^{i} = 1 + x + x^{2} + x^{2} + x^{3} + x^{4} + \dots + x^{n-1}$$

The Area Problem Revisited

$$U(f, P) = \sum_{i=1}^{n} M_i \Delta x_i$$
$$L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i,$$

where M_i and m_i are, respectively, the maximum and minimum values of f on the *i*th subinterval $[x_{i-1}, x_i]$, $1 \le i \le n$.



Simplifying long soms
(D) Distribute and simplify:
(hint: first distribute 1 and then -x.
group "like terms")
(a)
$$(1-x)(1+x)$$

(b) $(1-x)(1+x+x^2)$
(c) $(1-x)(1+x+x^2+x^3)$
(d) $(1-x)(1+x+x^2+x^3)$
(d) $(1-x)(1+x+x^2+x^3+x^4)$
(e) In (a.)-(d.), solve for $\sum_{i=0}^{n-1} x^i$
(in (a) $n=2$, in (b.) $n=3$, in (c.) $n=4$, in (d.) $n=5$)
What did you have to assume to do this?
(in carries a general simple (compact)
formula for $\sum_{i=0}^{n-1} x^i$
(f) Simplify $(1+\frac{1}{3}+(\frac{1}{3})^2+(\frac{1}{3})^4+(\frac{1}{3})^5)$ $(\frac{hint:}{x=\frac{1}{3}})$

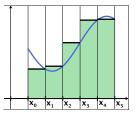
Riemann Sums

Given a partition *P* of [a, b], $P = \{a = x_0, x_1, x_3, \dots, x_n = b\}$, and $\Delta x_i = x_i - x_{i-1}$ the width of the *i*th subinterval, $1 \le i \le n$;

Let f be defined on [a, b].

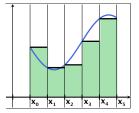
Then the Right Riemann Sum is

$$\sum_{i=1}^n f(x_i) \Delta x_i,$$



and the Left Riemann Sum is

$$\sum_{i=0}^{n-1} f(x_i) \Delta x_i$$



The Definite Integral

Let P be a partition of the interval [a, b], $P = \{x_0, x_1, x_2, ..., x_n\}$ with $a = x_0 \le x_1 \le x_2 \dots x_n = b$.

Let $\Delta x_i = x_i - x_{i+1}$ be the width of the *i*th subinterval, $1 \le i \le n$. Let *f* be a function defined on [a, b].

We say that f is Riemann integrable on [a, b] if there exists a number A such that $L(f, P) \le A \le U(f, P)$ for all partitions of [a, b]. We write the number as

$$A = \int_a^b f(x) dx$$

and call it the definite integral of f over [a, b].

Theorem

If f is continuous on [a, b], then f is Riemann integrable on [a, b].

Theorem

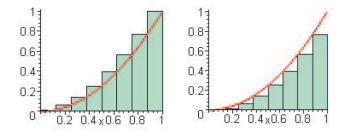
If f is Riemann integrable on [a, b], then

$$\int_{a}^{b} f(x) dx = \lim_{\substack{n \to \infty \\ ||P|| \to 0}} \sum_{i=1}^{n} f(c_i) \Delta x_i$$

where c_i is any point in the interval $[x_{i-1}, x_i]$ and ||P|| is the maximum length of the Δx_i .

Example

Use an Upper Riemann Sum and a Lower Riemann Sum, first with 8, then with 100 subintervals of equal length to approximate the area under the graph of $y = f(x) = x^2$ on the interval [0, 1].

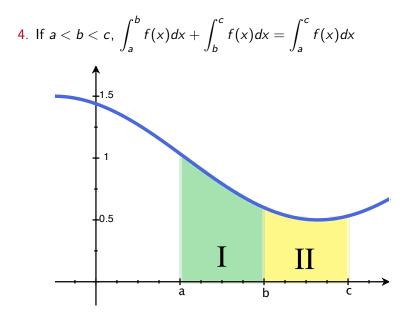


Properties of the Definite Integral

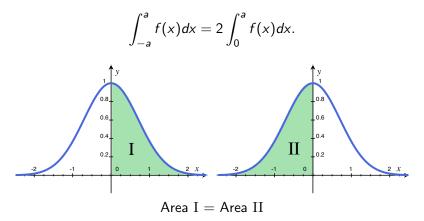
$$1. \int_a^a f(x) dx = 0.$$

- 2. If f is integrable and
 - (a) $f(x) \ge 0$ on [a, b], then $\int_a^b f(x) dx$ equals the area of the region under the graph of f and above the interval [a, b];
 - (b) f(x) ≤ 0 on [a, b], then ∫_a^b f(x)dx equals the negative of the area of the region between the interval [a, b] and the graph of f.

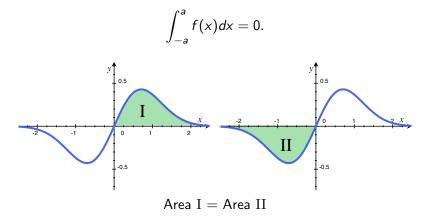
3.
$$\int_b^a f(x) dx = -\int_a^b f(x) dx.$$



5. If f is an **even** function, then

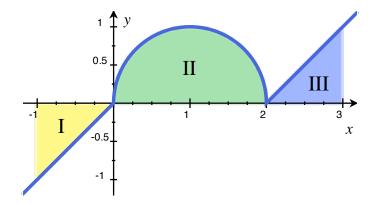


6. If f is an **odd** function, then



Example

If
$$f(x) = \begin{cases} x, & x < 0, \\ \sqrt{1 - (x - 1)^2}, & 0 \ge x \le 2, \\ x - 2, & x \ge 2, \end{cases}$$
 what is $\int_{-1}^3 f(x) dx$?



Mean Value Theorem for Definite Integrals

Theorem

Let f be continuous on the interval [a, b]. Then there exists c in [a, b] such that

$$\int_a^b f(x)dx = (b-a)f(c).$$

Definition

The average value of a continuous function on the interval [a, b] is

$$\frac{1}{b-a}\int_a^b f(x)dx.$$