The Definite Integral

11/09/2011

The Area Problem

Upper and Lower Sums

Suppose we want to use rectangles to approximate the area under the graph of $y=x+1$ on the interval $[0,1]$.

Upper Riemann Sum

Lower Riemann Sum

$$
31 / 20>1.5>29 / 20
$$

As you take more and more smaller and smaller rectangles, if f is nice, both of these will approach the real area.

n	U	L
100	1.505000000	1.495000000
150	1.503333333	1.496666667
200	1.502500000	1.497500000
300	1.501666667	1.498333333
500	1.501000000	1.499000000

In general: finding the Area Under a Curve

1. Let $y=f(x)$ be given and defined on an interval $[a, b]$. Subdivide the interval $[a, b]$ into n pieces. Label the endpoints:

$$
a=x_{0} \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}=b
$$

Define $P=\left\{x_{0}, x_{1}, x_{2}, \ldots x_{n}\right\}$.
2. Let $\Delta x_{i}=x_{i}-x_{i-1}$ be the width of the $i^{\text {th }}$ interval, $1 \leq i \leq n$.
3. Form the Upper Riemann Sum $U(f, P)$: let M_{i} be the maximum value of the function on that $i^{\text {th }}$ interval, so

$$
U(f, P)=M_{1} \Delta x_{1}+M_{2} \Delta x_{2}+\cdots+M_{n} \Delta x_{n} .
$$

4. Form the Lower Riemann Sum $L(f, P)$: let m_{i} be the minimum value of the function on that $i^{\text {th }}$ interval, so

$$
L(f, P)=m_{1} \Delta x_{1}+m_{2} \Delta x_{2}+\cdots+m_{n} \Delta x_{n}
$$

5. Take the limit as $n \rightarrow \infty$ and the maximum $\Delta x_{i} \rightarrow 0$.

Sigma Notation

If m and n are integers with $m \leq n$, and if f is a function defined on the integers from m to n, then the symbol $\sum_{i=m}^{n} f(i)$, called
sigma notation, is means

$$
\sum_{i=m}^{n} f(i)=f(m)+f(m+1)+f(m+2)+\cdots+f(n)
$$

Sigma Notation

If m and n are integers with $m \leq n$, and if f is a function defined
on the integers from m to n, then the symbol $\sum_{i=m}^{n} f(i)$, called
sigma notation, is means

$$
\sum_{i=m}^{n} f(i)=f(m)+f(m+1)+f(m+2)+\cdots+f(n)
$$

$$
\begin{aligned}
\text { Examples: } \quad \sum_{i=1}^{n} i & =1+2+3+\cdots+n \\
\sum_{i=1}^{n} i^{2} & =1^{2}+2^{2}+3^{2}+\cdots+n^{2} \\
\sum_{i=1}^{n} \sin (i) & =\sin (1)+\sin (2)+\sin (3)+\cdots+\sin (n) \\
\sum_{i=0}^{n-1} x^{i} & =x^{0}+x+x^{2}+x^{2}+x^{3}+x^{4}+\cdots+x^{n-1}
\end{aligned}
$$

Sigma Notation

If m and n are integers with $m \leq n$, and if f is a function defined
on the integers from m to n, then the symbol $\sum_{i=m}^{n} f(i)$, called
sigma notation, is means

$$
\sum_{i=m}^{n} f(i)=f(m)+f(m+1)+f(m+2)+\cdots+f(n)
$$

Examples: $\quad \sum_{i=1}^{n} i=1+2+3+\cdots+n$

$$
\begin{aligned}
\sum_{i=1}^{n} i^{2} & =1^{2}+2^{2}+3^{2}+\cdots+n^{2} \\
\sum_{i=1}^{n} \sin (i) & =\sin (1)+\sin (2)+\sin (3)+\cdots+\sin (n) \\
\sum_{i=0}^{n-1} x^{i} & =1+x+x^{2}+x^{2}+x^{3}+x^{4}+\cdots+x^{n-1}
\end{aligned}
$$

Simplifying long sums
(1) Distribute and simplify:
(hint: first distribute 1 and then $-x$. group "like terms")
(a.) $(1-x)(1+x)=1-x^{2}$
(b.) $(1-x)\left(1+x+x^{2}\right)=1-x^{3}$
(c.) $(1-x)\left(1+x+x^{2}+x^{3}\right)=1-x^{4}$
(d.) $(1-x)\left(1+x+x^{2}+x^{3}+x^{4}\right)=1-x^{5}$
(2) $\ln (a)-.(d$.$) , solve for \sum_{i=0}^{n-1} x^{i}$ (in (a.) $n=2$, in (b.) $n=3$, in (c.) $n=4$, in (d.) $n=5$) What did you have to assume to do this?
(3) Write a general simple (compact) formula for $\sum_{i=0}^{n-1} x^{i}$.
(4) Simplify $\left(1+\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{3}+\left(\frac{1}{3}\right)^{4}+\left(\frac{1}{3}\right)^{5}\right) \quad\binom{$ hint: }{$x=\frac{1}{3}}$
(2) (a.) $1+x=\frac{1-x^{2}}{1-x}$
(b.) $1+x+x^{2}=\frac{1-x^{3}}{1-x}$
(c.) $1+x+x^{2}+x^{3}=\frac{1-x^{4}}{1-x}$
(d.) $1+x+x^{2}+x^{3}+x^{4}=\frac{1-x^{5}}{1-x}$
(3) $1+x+x^{2}+\cdots+x^{n-1}=\frac{1-x^{n}}{1-x}$

$$
\begin{aligned}
& \sum_{i=0}^{5}\left(\frac{1}{3}\right)^{i} \\
&=1+\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{3}+\left(\frac{1}{3}\right)^{4}+\left(\frac{1}{3}\right)^{5} \\
& n=6, x=\frac{1}{3} \\
&=\underbrace{1-(1 / 3)}_{2 / 3}=\frac{3}{2}(\underbrace{1-(1 / 3)^{6}}_{7 ?}) \\
&=\frac{3}{2}\left(\frac{1-\frac{1}{3}}{1-(1 / 3)^{6}}\right) \\
&=\frac{3}{2}\left(\frac{3^{6}-1}{3^{6}}\right) \\
&=\frac{1}{2}\left(\frac{3^{6}-1}{3^{5}}\right) \\
& 1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}
\end{aligned}
$$

The Area Problem Revisited

$$
\begin{aligned}
& U(f, P)=\sum_{i=1}^{n} M_{i} \Delta x_{i} \\
& L(f, P)=\sum_{i=1}^{n} m_{i} \Delta x_{i},
\end{aligned}
$$

where M_{i} and m_{i} are, respectively, the maximum and minimum values of f on the i th subinterval $\left[x_{i-1}, x_{i}\right], 1 \leq i \leq n$.

$$
n=5
$$

Riemann Sums

Given a partition P of $[a, b], P=\left\{a=x_{0}, x_{1}, x_{3}, \ldots, x_{n}=b\right\}$, and $\Delta x_{i}=x_{i}-x_{i-1}$ the width of the i th subinterval, $1 \leq i \leq n$;

Let f be defined on $[a, b]$.
Then the Right Riemann Sum is

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x_{i}
$$

and the Left Riemann Sum is

$$
\sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x_{i}
$$

The Definite Integral

Let P be a partition of the interval $[a, b], P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ with $a=x_{0} \leq x_{1} \leq x_{2} \ldots x_{n}=b$.

Let $\Delta x_{i}=x_{i}-x_{i+1}$ be the width of the i th subinterval, $1 \leq i \leq n$. Let f be a function defined on $[a, b]$.

We say that f is Riemann integrable on $[a, b]$ if there exists a number A such that $L(f, P) \leq A \leq U(f, P)$ for all partitions of $[a, b]$. We write the number as

$$
A=\int_{a}^{b} f(x) d x
$$

and call it the definite integral of f over $[a, b]$.

Theorem
If f is continuous on $[a, b]$, then f is Riemann integrable on $[a, b]$.

Theorem

If f is Riemann integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{\substack{n \rightarrow \infty \\\|P\| \rightarrow 0}} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

where c_{i} is any point in the interval $\left[x_{i-1}, x_{i}\right]$ and $\|P\|$ is the maximum length of the Δx_{i}.

Example

Use an Upper Riemann Sum and a Lower Riemann Sum, first with 8 , then with 100 subintervals of equal length to approximate the area under the graph of $y=f(x)=x^{2}$ on the interval $[0,1]$.

$$
\begin{gathered}
U(f, P)=\sum_{i=1}^{8}\left(\frac{i}{8}\right)^{2} \frac{1}{8} \\
b / c \quad x_{0}=0, x_{1}=\frac{1}{8}, x_{2}=\frac{2}{8} \ldots \quad x_{i}=\frac{i}{8} \\
L(f, P)=\sum_{i=0}^{7}\left(\frac{i}{8}\right)^{2} \frac{1}{8} . \\
\uparrow \\
n_{0}+x^{i} \\
\text { is }(i)^{x}
\end{gathered}
$$

Properties of the Definite Integral

1. $\int_{a}^{a} f(x) d x=0$.
2. If f is integrable and
(a) $f(x) \geq 0$ on $[a, b]$, then $\int_{a}^{b} f(x) d x$ equals the area of the region under the graph of f and above the interval $[a, b]$;
(b) $f(x) \leq 0$ on $[a, b]$, then $\int_{a}^{b} f(x) d x$ equals the negative of the area of the region between the interval $[a, b]$ and the graph of f.
3. $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$.

$$
A=0 .
$$

4. If $a<b<c, \int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$

5. If f is an even function, then

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

Area $I=$ Area II
6. If f is an odd function, then

$$
\int_{-a}^{a} f(x) d x=0
$$

Area $\mathrm{I}=$ Area II

Example

$$
\text { If } f(x)= \begin{cases}x, & x<0 \\ \sqrt{1-(x-1)^{2}}, & 0 \geq x \leq 2, \text { what is } \int_{-1}^{3} f(x) d x ? \\ x-2, & x \geq 2,\end{cases}
$$

$$
\begin{aligned}
A(I) & =\frac{1}{2} \\
\int_{-1}^{0} f(x) d x & =-\frac{1}{2} \\
A(I I) & =\frac{\pi 1^{2}}{2}=\frac{\pi}{2} \\
\int_{0}^{2} f(x) d x & =\frac{\pi}{2} \\
A(I I) & =\frac{1}{2} \\
\int_{2}^{3} f d x & =1 / 2 \\
\int_{-1}^{3} f(x) d x & =\int_{-1}^{0} f d x+\int_{0}^{2} f d x+\int_{2}^{3} f d x \\
& =-\frac{1}{2}+\frac{\pi}{2}+\frac{1}{2}=\frac{\pi}{2}
\end{aligned}
$$

Mean Value Theorem for Definite Integrals

Theorem

Let f be continuous on the interval $[a, b]$. Then there exists c in [a, b] such that

$$
\int_{a}^{b} f(x) d x=(b-a) f(c)
$$

Definition
The average value of a continuous function on the interval $[a, b]$ is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

