11/7: Modeling Accumulations

The purpose of calculus is twofold:

1. to find how something is changing, given what it's doing;
2. to find what something is doing, given how it's changing.

We did (1) geometrically and algebraically. We did (2) algebraically. Let's do (2) geometrically!

If you travel at 2 mph for 4 hours, how far have you gone?

Answer: 8 miles.
Another way: Area $=8$

(graph of speed, i.e. graph of derivative)

If you travel at 1 mph for 2 hours, and 2 mph for 2 hours, how far have you gone?

If you travel at

> .175 mph for $1 / 4$ hour,
> .25 mph for $1 / 4$ hour,

2 mph for $1 / 4$ hour,
how far have you gone?

(graph of speed, i.e. graph of derivative)

If you travel at
5 mph for 1 hour,
1 mph for 1 hour,
1.5 mph for 1 hour,

2 mph for 1 hour,
how far have you gone?

If you travel at $\frac{1}{2} t \mathrm{mph}$ for 2 hours, how far have you gone?

(graph of speed, i.e. graph of derivative)

Estimate the area under the curve $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate the area under the curve $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate 1: pick the highest point Area ≈ 8

Estimate the area under the curve $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate 2: pick two points
Area $\approx 1+4=5$

Estimate the area under the curve $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate 4: pick eight points

Estimate the area under the curve $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate 3: pick four points

Estimate the area under the curve $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate 5: pick sixteen points
Area ≈ 2.921875

Estimating the Area of a Circle with $r=1$
Divide it up into rectangles:

Estimating the Area of a Circle with $r=1$
Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

The Method of Accumulations

Big idea: Estimating, and then taking a limit.

Let the number of pieces go to ∞
i.e. let the base of the rectangle for to 0 .

This not only gives us a way to calculate, but gives us a proper definition of what we mean by area!

Also good for volumes and lengths...

A small dam breaks on a river. The average flow out of the stream is given by the following:

hours	m^{3} / s	hours	m^{3} / s	hours	m^{3} / s
0	150	4.25	1460	8.25	423
0.25	230	4.5	1350	8.5	390
0.5	310	4.75	1270	8.75	365
0.75	430	5	1150	9	325
1	550	5.25	1030	9.25	300
1.25	750	5.5	950	9.5	280
1.5	950	5.75	892	9.75	260
1.75	1150	6	837	10	233
2	1350	6.25	770	10.25	220
2.25	1550	6.5	725	10.5	199
2.5	1700	6.75	658	10.75	188
2.75	1745	7	610	11	180
3	1750	7.25	579	11.25	175
3.25	1740	7.5	535	11.5	168
3.5	1700	7.75	500	11.75	155
3.75	1630	8	460	12	150
4	1550				

A small dam breaks on a river. The average flow out of the stream is given by the following:

Over each time interval, we estimate the volume of water by
Average rate $\times 900 \mathrm{~s}$

Over each time interval, we estimate the volume of water by
Average rate $\times 900 \mathrm{~s}$

Over each time interval, we estimate the volume of water by
Average rate $\times 900 \mathrm{~s}$

hours	m^{3}	hours	m^{3}	hours	m^{3}
0	135000	4.25	1314000	8.25	380700
0.25	207000	4.5	1215000	8.5	351000
0.5	279000	4.75	1143000	8.75	328500
0.75	387000	5	1035000	9	292500
1	495000	5.25	927000	9.25	270000
1.25	675000	5.5	855000	9.5	252000
1.5	855000	5.75	802800	9.75	234000
1.75	1035000	6	753300	10	209700
2	1215000	6.25	693000	10.25	198000
2.25	1395000	6.5	652500	10.5	179100
2.5	1530000	6.75	592200	10.75	169200
2.75	1570500	7	549000	11	162000
3	1575000	7.25	521100	11.25	157500
3.25	1566000	7.5	481500	11.5	151200
3.5	1530000	7.75	450000	11.75	139500
3.75	1467000	8	414000	12	135000
	1395000			total $=33,319,800$	

A tent is raised and has height given by $x y$ over the 2×2 grid where $0<x<2$ and $0<y<2$. What is the volume of the tent?

A tent is raised and has height given by $x y$ over the 2×2 grid where $0<x<2$ and $0<y<2$. What is the volume of the tent?

Estimate via boxes!
Volume $=$ base *height.

x	y	height $=x y$	volume
0	0	0	$0^{*} 1$
0	1	0	$0^{*} 1$
1	0	0	$0^{*} 1$
1	1	1	$1^{*} 1$

total volume ≈ 1

A tent is raised and has height given by $x y$ over the 2×2 grid where $0<x<2$ and $0<y<2$. What is the volume of the tent?

Estimate via boxes!
Volume $=$ base $*$ height.

x	y	height $=x y$	volume
1	1	1	$1^{*} 1$
1	2	2	$2 * 1$
2	1	2	$2 * 1$
2	2	4	$4^{*} 1$

total volume ≈ 9

A tent is raised and has height given by $x y$ over the 2×2 grid where $0<x<2$ and $0<y<2$. What is the volume of the tent?

Estimate via boxes!
Volume $=$ base *height.

x	y	height $=x y$	volume
.5	.5	.25	$.5 * 1$
.5	1.5	.75	$.75 * 1$
1.5	.5	.75	$.75 * 1$
1.5	1.5	2.25	$2.25 * 1$

total volume ≈ 4.25

