11/7: Modeling Accumulations

The purpose of calculus is twofold:

- $1. \ \mbox{to find how something is changing, given what it's doing;}$
- 2. to find what something is doing, given how it's changing.

We did (1) geometrically and algebraically. We did (2) algebraically. Let's do (2) geometrically!

If you travel at 2 mph for 4 hours, how far have you gone?

If you travel at 1 mph for 2 hours, and 2 mph for 2 hours, how far have you gone?

If you travel at

.175 mph for 1/4 hour, .25 mph for 1/4 hour,

2 mph for 1/4 hour,

how far have you gone?

If you travel at .5 mph for 1 hour, 1 mph for 1 hour, 1.5 mph for 1 hour, 2 mph for 1 hour, how far have you gone?

If you travel at $\frac{1}{2}t$ mph for 2 hours, how far have you gone?

Estimate the area under the curve $y = \frac{1}{8}x^2$ between x = 0 and x = 4:

Estimate the area under the curve $y = \frac{1}{8}x^2$ between x = 0 and x = 4:

Estimate the area under the curve $y = \frac{1}{8}x^2$ between x = 0 and x = 4:

Estimate the area under the curve $y = \frac{1}{8}x^2$ between x = 0 and x = 4:

Estimate the area under the curve $y = \frac{1}{8}x^2$ between x = 0 and x = 4:

Estimating the Area of a Circle with r = 1

Divide it up into rectangles:

Estimating the Area of a Circle with r = 1

The Method of Accumulations

Big idea: Estimating, and then taking a limit.

Let the number of pieces go to ∞ i.e. let the base of the rectangle for to 0.

This not only gives us a way to calculate, but gives us a proper definition of what we mean by area!

Also good for volumes and lengths...

hours	m^3/s	hours	m^3/s	hours	m^3/s
0	150	4.25	1460	8.25	423
0.25	230	4.5	1350	8.5	390
0.5	310	4.75	1270	8.75	365
0.75	430	5	1150	9	325
1	550	5.25	1030	9.25	300
1.25	750	5.5	950	9.5	280
1.5	950	5.75	892	9.75	260
1.75	1150	6	837	10	233
2	1350	6.25	770	10.25	220
2.25	1550	6.5	725	10.5	199
2.5	1700	6.75	658	10.75	188
2.75	1745	7	610	11	180
3	1750	7.25	579	11.25	175
3.25	1740	7.5	535	11.5	168
3.5	1700	7.75	500	11.75	155
3.75	1630	8	460	12	150
4	1550				

A small dam breaks on a river. The average flow out of the stream is given by the following:

A small dam breaks on a river. The average flow out of the stream is given by the following:

Over each time interval, we estimate the volume of water by Average rate \times 900 s

Over each time interval, we estimate the volume of water by Average rate \times 900 s

Over each time interval, we estimate the volume of water by Average rate \times 900 s

—	2	-	2		2
hours	m°	hours	m°	hours	m°
0	135000	4.25	1314000	8.25	380700
0.25	207000	4.5	1215000	8.5	351000
0.5	279000	4.75	1143000	8.75	328500
0.75	387000	5	1035000	9	292500
1	495000	5.25	927000	9.25	270000
1.25	675000	5.5	855000	9.5	252000
1.5	855000	5.75	802800	9.75	234000
1.75	1035000	6	753300	10	209700
2	1215000	6.25	693000	10.25	198000
2.25	1395000	6.5	652500	10.5	179100
2.5	1530000	6.75	592200	10.75	169200
2.75	1570500	7	549000	11	162000
3	1575000	7.25	521100	11.25	157500
3.25	1566000	7.5	481500	11.5	151200
3.5	1530000	7.75	450000	11.75	139500
3.75	1467000	8	414000	12	135000
4	1395000			total=33,319,800	

A tent is raised and has height given by xy over the 2 \times 2 grid where 0 < x < 2 and 0 < y < 2. What is the volume of the tent?

A tent is raised and has height given by xy over the 2 \times 2 grid where 0 < x < 2 and 0 < y < 2. What is the volume of the tent?

A tent is raised and has height given by xy over the 2 × 2 grid where 0 < x < 2 and 0 < y < 2. What is the volume of the tent?

A tent is raised and has height given by xy over the 2 × 2 grid where 0 < x < 2 and 0 < y < 2. What is the volume of the tent?

Estimate via boxes! Volume = base *height.

٨

	2							
1					x	y	height = xy	volume
					.5	.5	.25	.5 * 1
	•				.5	1.5	.75	.75 * 1
	1				1.5	.5	.75	.75 * 1
-	-				1.5	1.5	2.25	2.25 * 1
			•	total volume $pprox$ 4.25				
0		1		2				
	•	•						