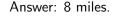
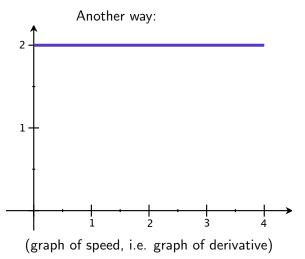
Modeling Accumulations: Introduction to the Issues

11/07/2011

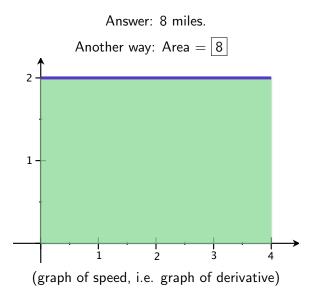
The purpose of calculus is twofold:

- 1. to find how something is changing, given what it's doing;
- 2. to find what something is doing, given how it's changing.

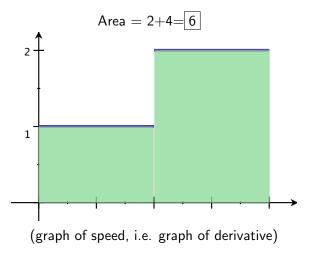

We did (1) geometrically and algebraically. We did (2) algebraically. Let's do (2) geometrically!



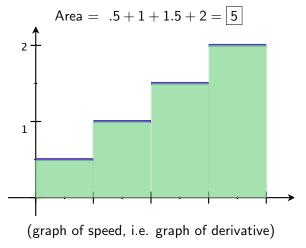
If you travel at 2 mph for 4 hours, how far have you gone?


If you travel at 2 mph for 4 hours, how far have you gone?
Answer: 8 miles.
Answer: o miles.

If you travel at 2 mph for 4 hours, how far have you gone?



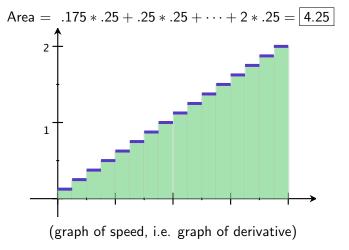
If you travel at 2 mph for 4 hours, how far have you gone?


If you travel at 1 mph for 2 hours, and 2 mph for 2 hours, how far have you gone?

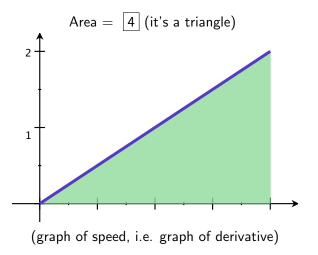
If you travel at

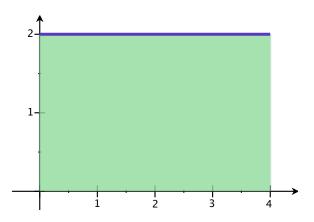
.5 mph for 1 hour, 1 mph for 1 hour, 1.5 mph for 1 hour, 2 mph for 1 hour,

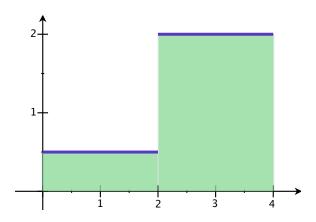
how far have you gone?

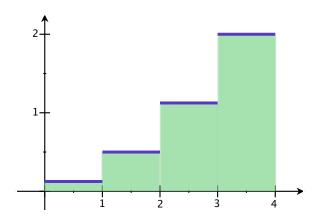

If you travel at

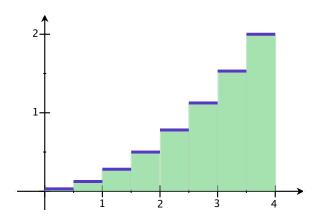
.175 mph for 1/4 hour, .25 mph for 1/4 hour,

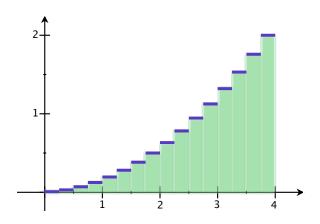

. . .

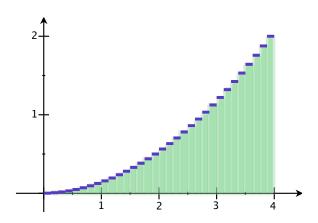

2 mph for 1/4 hour,

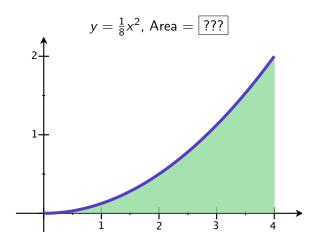

how far have you gone?

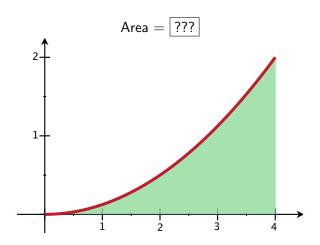


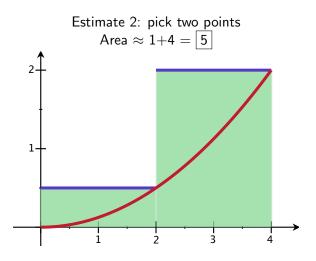

If you travel at $\frac{1}{2}t$ mph for 2 hours, how far have you gone?

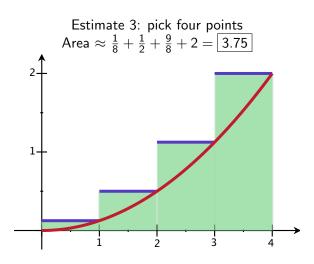


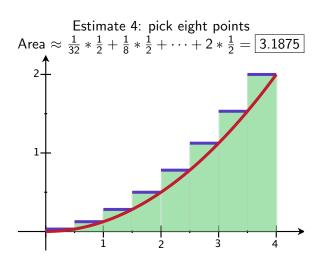


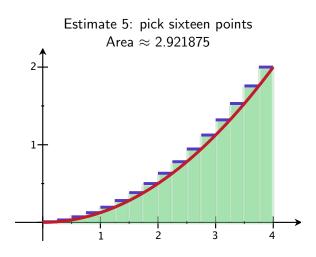


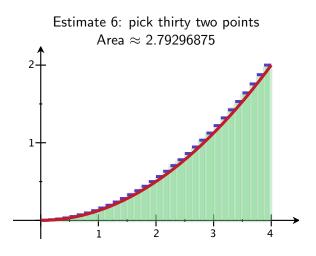


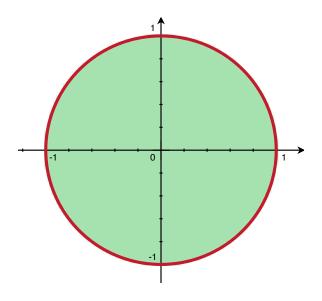


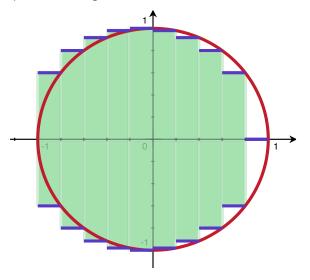



Estimate the area under the curve $y = \frac{1}{8}x^2$ between x = 0 and x = 4:

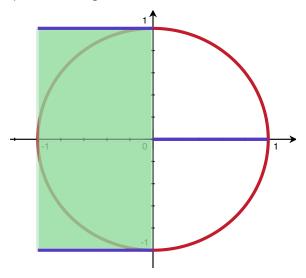



Estimate 1: pick the highest point Area ≈ 8



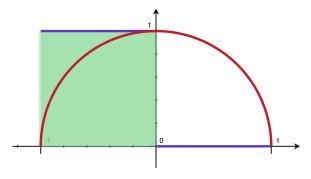


Estimating the Area of a Circle with r=1


Estimating the Area of a Circle with $r=1\,$

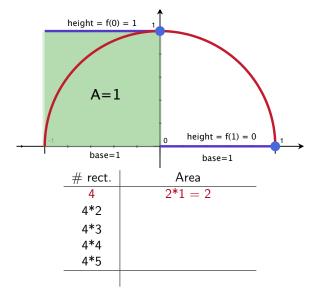
Divide it up into rectangles:

Estimating the Area of a Circle with $r=1\,$


Divide it up into rectangles:

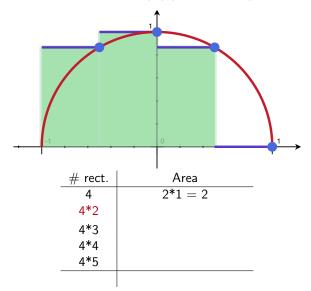
Estimating the Area of a Circle with r = 1

Divide it up into rectangles:


Estimate area of the half circle $(f(x) = \sqrt{1-x^2})$ and mult. by 2.

Estimating the Area of a Circle with r = 1

Divide it up into rectangles:


Estimate area of the half circle $(f(x) = \sqrt{1-x^2})$ and mult. by 2.

Estimating the Area of a Circle with r = 1

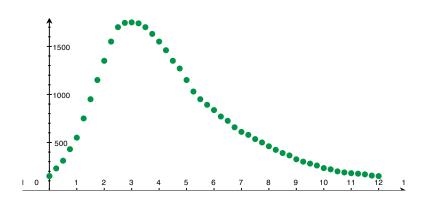
Divide it up into rectangles:

Estimate area of the half circle $(f(x) = \sqrt{1-x^2})$ and mult. by 2.

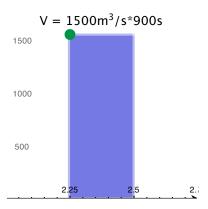
The Method of Accumulations

Big idea: Estimating, and then taking a limit.

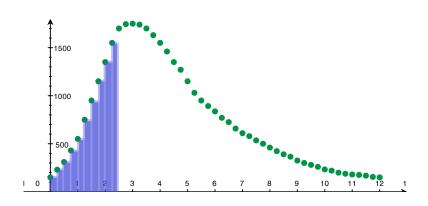
Let the number of pieces go to ∞ i.e. let the base of the rectangle for to 0.


This not only gives us a way to calculate, but gives us a proper definition of what we mean by area!

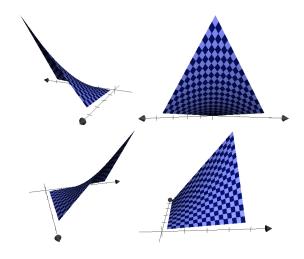
Also good for volumes and lengths...


A small dam breaks on a river. The average flow out of the stream is given by the following:

hours	m^{3}/s	hours	m³/s	hours	m^3/s
0	150	4.25	1460	8.25	423
0.25	230	4.5	1350	8.5	390
0.5	310	4.75	1270	8.75	365
0.75	430	5	1150	9	325
1	550	5.25	1030	9.25	300
1.25	750	5.5	950	9.5	280
1.5	950	5.75	892	9.75	260
1.75	1150	6	837	10	233
2	1350	6.25	770	10.25	220
2.25	1550	6.5	725	10.5	199
2.5	1700	6.75	658	10.75	188
2.75	1745	7	610	11	180
3	1750	7.25	579	11.25	175
3.25	1740	7.5	535	11.5	168
3.5	1700	7.75	500	11.75	155
3.75	1630	8	460	12	150
4	1550				

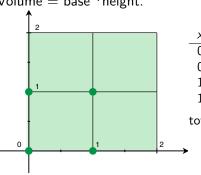

A small dam breaks on a river. The average flow out of the stream is given by the following:

Over each time interval, we estimate the volume of water by $\text{Average rate} \times 900 \text{ s}$


Over each time interval, we estimate the volume of water by $\text{Average rate} \times 900 \text{ s}$

Over each time interval, we estimate the volume of water by $\text{Average rate} \, \times \, 900 \, \, \text{s}$

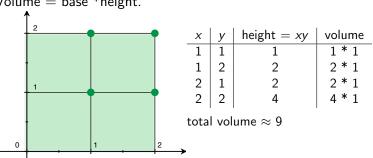
hours	m^3	hours	m^3	hours	m ³
0	135000	4.25	1314000	8.25	380700
0.25	207000	4.5	1215000	8.5	351000
0.5	279000	4.75	1143000	8.75	328500
0.75	387000	5	1035000	9	292500
1	495000	5.25	927000	9.25	270000
1.25	675000	5.5	855000	9.5	252000
1.5	855000	5.75	802800	9.75	234000
1.75	1035000	6	753300	10	209700
2	1215000	6.25	693000	10.25	198000
2.25	1395000	6.5	652500	10.5	179100
2.5	1530000	6.75	592200	10.75	169200
2.75	1570500	7	549000	11	162000
3	1575000	7.25	521100	11.25	157500
3.25	1566000	7.5	481500	11.5	151200
3.5	1530000	7.75	450000	11.75	139500
3.75	1467000	8	414000	12	135000
4	1395000			total=3	33,319,800


A tent is raised and has height given by xy over the 2×2 grid where 0 < x < 2 and 0 < y < 2. What is the volume of the tent?

A tent is raised and has height given by xy over the 2×2 grid where 0 < x < 2 and 0 < y < 2. What is the volume of the tent?

Estimate via boxes!

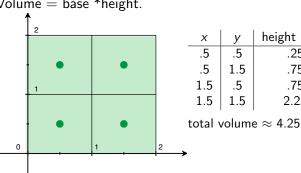
Volume = base *height.



	X	y	height = xy	volume	
	0	0	0	0 * 1	
	0	1	0	0 * 1	
	1	0	0	0 * 1	
	1	1	1	1 * 1	
total volume ≈ 1					

A tent is raised and has height given by xy over the 2×2 grid where 0 < x < 2 and 0 < y < 2. What is the volume of the tent?

Estimate via boxes!


Volume = base *height.

A tent is raised and has height given by xy over the 2×2 grid where 0 < x < 2 and 0 < y < 2. What is the volume of the tent?

Estimate via boxes!

Volume = base *height.

X	у	height = xy	volume	
.5	.5	.25	.5 * 1	
.5	1.5	.75	.75 * 1	
1.5	.5	.75	.75 * 1	
1.5	1.5	2.25	2.25 * 1	
	!	•		