Warm up

Sketch the graph of

$$
f(x)=(x-3)(x-2)(x-1)=x^{3}-6 x^{2}+11 x-6
$$

over the interval $[1,4]$. Mark any critical points and inflection points. What is the absolute maximum over this interval? What is the absolute minimum over this interval?
[useful value: $\sqrt{3} / 3 \approx .6$]

Suppose you want to fence off a garden, and you have 100 m of fence. What is the largest area that you can fence off?

Get it into math:

$$
\text { Know: } \quad 2 x+2 y=100 \quad \text { Want: } \quad \text { Maximize } A=x y
$$

Problem: The area, $x y$, is a function of two variables!!
Strategy: Use the first equation to get $x y$ into one variable: Solve $2 x+2 y=100$ (the "constraint") and plug into $x y$ (the function you want to optimize).

$$
2 x+2 y=100 \quad \Longrightarrow \quad y=50-x
$$

so $x y=x(50-x)=50 x-x^{2}$.

$$
\text { Domain: } 0 \leq x \leq 50
$$

New problem: Maximize $A(x)=50 x-x^{2}$ over the interval $0<x<50$.
Solution.

Three strategies:
(1) First derivative test:
(2) Pretend we're on a closed interval, then throw out the endpoints:
(3) Second derivative test:

Now suppose, instead, you want to divide your plot up into three equal parts:

If you still only have 100 m of fence, what is the largest area that you can fence off?

Suppose you want to make a can which holds about 16 ounces (28.875 in ${ }^{3}$). If the material for the top and bottom of the can costs $4 \mathrm{C} / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 \delta / \mathrm{in}^{2}$. What is the minimum cost for the can?

Get into one variable: Use the constraint!
$\pi r^{2} h=28.875 \Longrightarrow h=\frac{28.875}{\pi} r^{-2} \Longrightarrow C(r)=8 \pi r^{2}+6 \pi r\left(\frac{28.875}{\pi} r^{-2}\right)$
So

$$
C(r)=8 \pi r^{2}+\frac{6 * 28.875}{\pi} r^{-1}
$$

(Domain: $r>0$)

New problem: Minimize $C(r)=8 \pi r^{2}+\frac{6 * 28.875}{\pi} r^{-1}$ for $r>0$.
[hint: If you don't have a calculator, use the second derivative test!]

