Optimization

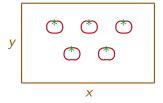
11/4/2011

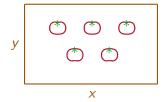
Warm up

Sketch the graph of

$$f(x) = (x-3)(x-2)(x-1) = x^3 - 6x^2 + 11x - 6$$

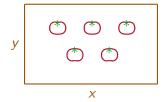
over the interval [1,4]. Mark any critical points and inflection points. What is the absolute maximum over this interval? What is the absolute minimum over this interval? [useful value: $\sqrt{3}/3 \approx .6$]





Get it into math:

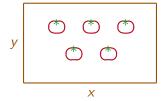
Know: 2x + 2y = 100 Want: Maximize A = xy



Get it into math:

Know: 2x + 2y = 100 Want: Maximize A = xy

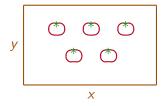
Problem: The area, xy, is a function of two variables!!



Get it into math:

Know: 2x + 2y = 100 Want: Maximize A = xy

Problem: The area, xy, is a function of two variables!! **Strategy:** Use the first equation to get xy into one variable: Solve 2x + 2y = 100 (the "constraint") and plug into xy (the function you want to optimize).

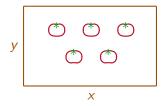


Get it into math:

Know:
$$2x + 2y = 100$$
 Want: Maximize $A = xy$

Problem: The area, xy, is a function of two variables!! **Strategy:** Use the first equation to get xy into one variable: Solve 2x + 2y = 100 (the "constraint") and plug into xy (the function you want to optimize).

$$2x + 2y = 100$$
 \implies $y = 50 - x$
so $xy = x(50 - x) = 50x - x^2$.



Get it into math:

Know:
$$2x + 2y = 100$$
 Want: Maximize $A = xy$

Problem: The area, xy, is a function of two variables!! **Strategy:** Use the first equation to get xy into one variable: Solve 2x + 2y = 100 (the "constraint") and plug into xy (the function you want to optimize).

$$2x + 2y = 100 \implies y = 50 - x$$

so $xy = x(50 - x) = 50x - x^2$. Domain: $0 \le x \le 50$

New problem: Maximize $A(x) = 50x - x^2$ over the interval 0 < x < 50.

New problem: Maximize $A(x) = 50x - x^2$ over the interval 0 < x < 50.

Solution...

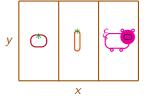
Three strategies:

(1) First derivative test:

(2) Pretend we're on a closed interval, then throw out the endpoints:

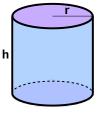
(3) Second derivative test:

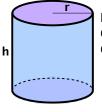
Now suppose, instead, you want to divide your plot up into three equal parts:



If you still only have 100 m of fence, what is the largest area that you can fence off?

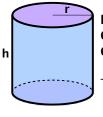
Suppose you want to make a can which holds about 16 ounces (28.875 in³). If the material for the top and bottom of the can costs 4 ϕ/in^2 and the material for the sides of the can costs 3 ϕ/in^2 . What is the minimum cost for the can?





Put into math: Constraint: $V = \pi r^2 h = 28.875$.

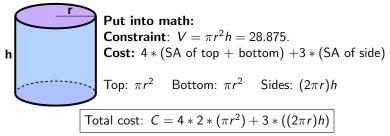
Cost: 4 * (SA of top + bottom) + 3 * (SA of side)

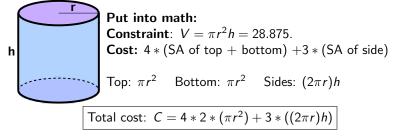


Put into math: Constraint: $V = \pi r^2 h = 28.875$.

Cost: 4 * (SA of top + bottom) + 3 * (SA of side)

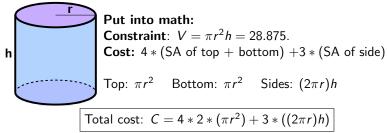
Top: πr^2 Bottom: πr^2 Sides: $(2\pi r)h$





Get into one variable: Use the constraint!

$$\pi r^2 h = 28.875 \implies h = \frac{28.875}{\pi} r^{-2}$$

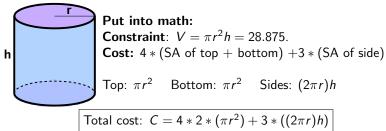


Get into one variable: Use the constraint!

$$\pi r^2 h = 28.875 \implies h = \frac{28.875}{\pi} r^{-2} \implies C(r) = 8\pi r^2 + 6\pi r \left(\frac{28.875}{\pi} r^{-2}\right)$$

So

$$C(r) = 8\pi r^2 + \frac{6*28.875}{\pi}r^{-1}$$



Get into one variable: Use the constraint!

$$\pi r^2 h = 28.875 \implies h = \frac{28.875}{\pi} r^{-2} \implies C(r) = 8\pi r^2 + 6\pi r \left(\frac{28.875}{\pi} r^{-2}\right)$$

So

$$C(r) = 8\pi r^2 + \frac{6*28.875}{\pi}r^{-1}$$

(Domain:
$$r > 0$$
)

New problem: Minimize $C(r)=8\pi r^2+\frac{6*28.875}{\pi}r^{-1}$ for r>0.

[hint: If you don't have a calculator, use the second derivative test!]