Curve Sketching

11/2/2011

Warm up

Below are pictured six functions: $f, f^{\prime}, f^{\prime \prime}, g, g^{\prime}$, and $g^{\prime \prime}$. Pick out the two functions that could be f and g, and match them to their first and second derivatives, respectively.

(e)

(b)

(f)

(c)

(g)

Warm up

Below are pictured six functions: $f, f^{\prime}, f^{\prime \prime}, g, g^{\prime}$, and $g^{\prime \prime}$. Pick out the two functions that could be f and g, and match them to their first and second derivatives, respectively.

Review: Monotonicity of functions on intervals

Suppose that the function f is defined on an interval l, and let x_{1} and x_{2} denote points in I :

1. f is increasing on $/$ if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
2. f is decreasing on I if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
3. f is constant on I if $f\left(x_{1}\right)=f\left(x_{2}\right)$ for any x_{1}, x_{2} in I.

Review: Testing monotonicity via derivatives

Recall: The derivative function $f^{\prime}(x)$ tells us the slope of the tangent line to the graph of the function f at the point $(x, f(x))$.

Theorem (Increasing/Decreasing Test)

Suppose that f is continuous on $[a, b]$ and differentiable on the open interval (a, b). Then

1. If $f^{\prime}(x)>0$ for every x in (a, b), then f is increasing on $[a, b]$.
2. If $f^{\prime}(x)<0$ for every x in (a, b), then f is decreasing on $[a, b]$.
3. If $f^{\prime}(x)=0$ for every x in (a, b), then f is constant on $[a, b]$.

What it looks like:

Theorem (Extreme Value Theorem)

If f is continuous on a closed interval $[a, b]$, then

1. there is a point c_{1} in the interval where f assumes it maximum value, i.e. $f(x) \leq f\left(c_{1}\right)$ for all x in $[a, b]$, and
2. there is a point c_{2} in the interval where f assumes its minimal value, i.e. $f(x) \geq f\left(c_{2}\right)$ for all x in $[a, b]$.

Finding minima and maxima is all about optimizing a function. So how do we find these values?

Finding Extreme Values with Derivatives

Theorem

If f is continuous in an open interval (a, b) and achieves a maximum (or minimum) value at a point c in (a, b) where $f^{\prime}(c)$ exists, then either $f^{\prime}(c)$ is not defined or $f^{\prime}(c)=0$.

Big Idea: if $f^{\prime}(c)$ exists, and is not equal to 0 , then $f(x)$ is either increasing or decreasing on both sides of c, so $f(c)$ could not be a \min or a max.

Definition: A point $x=c$ where $f^{\prime}(c)=0$ or where $f^{\prime}(c)$ doesn't exist is called a critical point. If $f^{\prime}(c)$ is undefined, c is also called a singular point.

Warning: Not all critical points are local minima or maxima:

Example: If $f(x)=x^{3}$, then $f^{\prime}(x)=3 x^{2}$, and so $f^{\prime}(0)=0$:

Strategy for closed bounded intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Strategy for closed bounded intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).
Example: Let $f(x)=x^{3}-3 x$. What are the min/max values on the interval $[0,2]$.

Strategy for closed bounded intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).
Example: Let $f(x)=x^{3}-3 x$. What are the $\min / m a x$ values on the interval $[0,2]$.

$$
f^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1)
$$

Strategy for closed bounded intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).
Example: Let $f(x)=x^{3}-3 x$. What are the min/max values on the interval $[0,2]$.

$$
f^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1)
$$

So $f^{\prime}(x)=0$ if $x=-1$ or 1 .

Strategy for closed bounded intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).
Example: Let $f(x)=x^{3}-3 x$. What are the min/max values on the interval $[0,2]$.

$$
f^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1)
$$

So $f^{\prime}(x)=0$ if $x=-1$ or 1 .

Strategy for closed bounded intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).
Example: Let $f(x)=x^{3}-3 x$. What are the min/max values on the interval $[0,2]$.

$$
f^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1)
$$

So $f^{\prime}(x)=0$ if $x=-1$ or 1 .

x	$f(x)$	
1	-2	critical points
0	0	end points
2	2	

Strategy for closed bounded intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).
Example: Let $f(x)=x^{3}-3 x$. What are the min/max values on the interval $[0,2]$.

$$
f^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1)
$$

So $f^{\prime}(x)=0$ if $x=-1$ or 1 .

x	$f(x)$
1	-2
0	0
2	2

critical points end points

First Derivative Test

Finding local extrema can be useful for sketching curves.
Let c be a critical/singular point of of a function $y=f(x)$ that is continuous on an open interval $I=(a, b)$ containing c. If f is differentiable on the interval (except possibly at the singular point $x=c$) then the value $f(c)$ can be classified as follows:

1. If $f^{\prime}(x)$ changes from positive to negative at $x=c$, then $f(c)$ is a local maximum.

2. If $f^{\prime}(x)$ changes from negative to positive at $x=c$, then $f(c)$ is a local minimum.

3. If $f^{\prime}(x)$ doesn't change sign, then it's neither a min or a max.

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:
$f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})$

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:
$f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})$

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:
$f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})$

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:
$f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})$

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:
$f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})$

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:
$f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})$

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:
$f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})$

Example

Find the local extrema of $f(x)=\frac{x^{4}+1}{x^{2}}$ over the whole real line.
[Hint: find a common denominator after taking a derivative.]

$$
\begin{aligned}
f & =x^{2}+\frac{1}{x^{2}} \\
f^{\prime} & =2 x-2 x^{-3} \Rightarrow \frac{2}{x^{3}} \\
& =\frac{2 x^{4}-2}{x^{3}}=2 \frac{x^{4}-1}{x^{3}}
\end{aligned}
$$

undefined @ $x=0$
$f^{\prime}(x)=0$ when $x^{4}-1=0$

$$
\left(x^{2}+1\right)(x+1)(x-1)=
$$

So critical points: $x=0,1,-1$
plug in... -2

Concavity

Q. How can we measure when a function is concave up or down?

Concave up
$f^{\prime}(x)$ is increasing

Concave down
$f^{\prime}(x)$ is decreasing

Concavity

Q. How can we measure when a function is concave up or down?

Concave up
$f^{\prime}(x)$ is increasing

$$
f^{\prime \prime}(x)>0
$$

Concave down
$f^{\prime}(x)$ is decreasing

$$
f^{\prime \prime}(x)<0
$$

Concavity and Inflection Points

Definition: The function f has an inflection point at the point $x=c$ if $f^{\prime}(c)$ exists and the concavity changes at $x=c$ from up to down or vice versa.

Back to the example $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$
Find the inflection points of $f(x)$, and where $f(x)$ is concave up or down.

We calculated $f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2$.

Back to the example $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$
Find the inflection points of $f(x)$, and where $f(x)$ is concave up or down.

We calculated $f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2$.

So

$$
f^{\prime \prime}(x)=36 x^{2}+24 x-2=(6 x-(\sqrt{6}-2))(6 x+\sqrt{6}+2)
$$

Back to the example $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$
Find the inflection points of $f(x)$, and where $f(x)$ is concave up or down.

We calculated $f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2$.

So

$$
f^{\prime \prime}(x)=36 x^{2}+24 x-2=(6 x-(\sqrt{6}-2))(6 x+\sqrt{6}+2)
$$

Back to the example $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$
Find the inflection points of $f(x)$, and where $f(x)$ is concave up or down.

We calculated $f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2$.

So

$$
f^{\prime \prime}(x)=36 x^{2}+24 x-2=(6 x-(\sqrt{6}-2))(6 x+\sqrt{6}+2)
$$

Back to the example $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$
Find the inflection points of $f(x)$, and where $f(x)$ is concave up or down.

We calculated $f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2$.

So

$$
f^{\prime \prime}(x)=36 x^{2}+24 x-2=(6 x-(\sqrt{6}-2))(6 x+\sqrt{6}+2)
$$

Putting it together

$\begin{array}{lll}\text { C.C. up } & \begin{array}{l}\text { C.C. } \\ \text { down }\end{array} \quad \text { C.C. up }\end{array}$

The second derivative test

Theorem

Let f be a function whose second derivative exists on an interval I containing x_{0}.

1. If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$, then $f\left(x_{0}\right)$ is a local minimum.
2. If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<0$, then $f\left(x_{0}\right)$ is a local maximum.
3. If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<=0$, then the test fails, use the first derivative test to decide.

Concave
Down

Concave
Up

$f^{\prime}\left(x_{0}\right)=0$

Sketch graphs of the following functions:

1. $f(x)=-3 x^{5}+5 x^{3}$.
2. $f(x)=\frac{x^{2}-1}{x^{2}+1}$

Instructions:

Step 1 Find any places where $f(x)$ is 0 or undefined.
Step 2 Calculate $f^{\prime}(x)$ and find critical/singular points.
Step 3 Classify where $f^{\prime}(x)$ is positive/negative, and therefore where $f(x)$ is increasing/decreasing.
Step 4 Calculate $f^{\prime \prime}(x)$, and find where it's 0 or undefined.
Step 5 Classify where $f^{\prime \prime}(x)$ is positive/negative, and therefore where $f(x)$ is concave up/down.
Step 6 Calculate $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ to see what the tails are doing.

Hint for 2: Always simplify as a fraction of polynomials after taking a derivative.
(1)

$$
\begin{aligned}
& f(x)=-3 x^{5}+5 x^{3}=x^{3}\left(-3 x^{2}+5\right)=-3\left(x^{3}\right)\left(x^{2}-\frac{5}{3}\right) \\
& f^{\prime}(x)=-15 x^{4}+15 x^{2}=-15\left(x^{4}-x^{2}\right) \quad f=0 \text { e } x=0, \\
&=-15 x^{2}(x+1)(x-1) \\
& f^{\prime}=0 \text { e } x=0, \pm 1 \\
& f^{\prime \prime}(x)=-60 x^{3}+30 x=-60(x)\left(x^{2}-\frac{1}{2}\right) \\
& f^{\prime \prime}=0 @ x=0, x= \pm \sqrt{1 / 2}
\end{aligned}
$$

$$
\lim _{x \rightarrow-\infty} f(x)=\infty
$$

$$
\lim _{x \rightarrow \infty} f(x)=-\infty
$$

(2) $f(x)=\frac{x^{2}-1}{x^{2}+1}=\frac{(x+1)(x-1)}{x^{2}+1}$
so $f(x)=0$ when $x= \pm 1$
(and is defined everywhere
since $x^{2}+1>0$)

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(x^{2}+1\right)(2 x)-\left(x^{2}-1\right)(2 x)}{\left(x^{2}+1\right)^{2}} \\
&=\frac{4 x}{\left(x^{2}+1\right)^{2}} \quad f^{\prime}(x)=0 \quad \text { when } x=0 \\
& f^{\prime \prime}(x)=\frac{4\left(x^{2}+1\right)^{2}-4 x \cdot 2\left(x^{2}+1\right) \cdot 2 x}{\left(x^{2}+1\right)^{4}} \\
&=\frac{\left(x^{2}+1\right)(4)\left(x^{2}+1-4 x^{2}\right)}{\left(x^{2}+1\right)^{4}} \\
&=\frac{-4 \cdot 3\left(x^{2}-1 / 3\right)}{\left(x^{2}+1\right)^{4}}=-12(x+1 / \sqrt{3})(x-1 / \sqrt{3}) \\
&\left(x^{2}+1\right)^{4}
\end{aligned}
$$

so $f^{\prime \prime}(x)=0$ when $x= \pm 1 / \sqrt{3}$

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x^{2}+1}=1 \quad \lim _{x \rightarrow-\infty} \frac{x^{2}-1}{x^{2}+1}=1
$$

