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Warm up

Below are pictured six functions: f,f’, " g,g’, and g”. Pick out
the two functions that could be f and g, and match them to their

first and second derivatives, respectively.
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Review: Monotonicity of functions on intervals

Suppose that the function f is defined on an interval /, and let x;
and x> denote points in |:

1. f is increasing on [ if f(x1) < f(x2) whenever x; < xa.

2. f is decreasing on [ if f(x1) > f(x2) whenever x; < xo.

3. fis constant on [ if f(x1) = f(x2) for any xq,x in /.



Review: Testing monotonicity via derivatives

Recall: The derivative function f’(x) tells us the slope of the
tangent line to the graph of the function f at the point (x, f(x)).

Theorem (Increasing/Decreasing Test)

Suppose that f is continuous on [a, b] and differentiable on the
open interval (a, b) . Then

1. If f'(x) > 0 for every x in (a, b), then f is increasing on [a, b].
2. If f'(x) < 0O for every x in (a, b), then f is decreasing on [a, b].
3. If f'(x) = 0 for every x in (a, b), then f is constant on |[a, b].



Decreasing

What it looks like:

Constant

Increasing

f'(x)<0

f'(x)=0

f'(x)>0
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Theorem (Extreme Value Theorem)
If f is continuous on a closed interval [a, b], then

1. there is a point c; in the interval where f assumes it
maximum value, i.e. f(x) < f(cy) for all x in [a, b], and

2. there is a point ¢y in the interval where f assumes its minimal
value, i.e. f(x) > f(c2) for all x in [a, b].

Finding minima and maxima is all about optimizing a function. So
how do we find these values?



Finding Extreme Values with Derivatives

Theorem

If f is continuous in an open interval (a, b) and achieves a
maximum (or minimum) value at a point c in (a, b) where f'(c)
exists, then either f'(c) is not defined or f'(c) = 0.

Big ldea: if f'(c) exists, and is not equal to 0, then f(x) is either
increasing or decreasing on both sides of ¢, so f(c) could not be a
min or a max.

Absolute max

Local min Local min

Absolute min

Definition: A point x = ¢ where f/(c) = 0 or where f'(c) doesn't
exist is called a critical point. If f/(c) is undefined, c is also called
a singular point.




Warning: Not all critical points are local minima or maxima:

Example: If f(x) = x3, then f/(x) = 3x2, and so f'(0) = 0:
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Strategy for closed bounded intervals

1. Calculate '(x).

2. Find where f'(x) is 0 or undefined on [a, b] (critical /singular
points).

3. Evaluate f(x) at the critical and singular points, and at
endpoints. The largest (reps. smallest) value among these is
the maximum (reps. minimum).
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First Derivative Test

Finding local extrema can be useful for sketching curves.

Let ¢ be a critical /singular point of of a function y = f(x) that is
continuous on an open interval | = (a, b) containing c. If f is
differentiable on the interval (except possibly at the singular point
x = c) then the value f(c) can be classified as follows:

1. If f’(x) changes from positive to negative at x = ¢, then f(c)
is a local maximum.

>0 H f<0

2. If f’(x) changes from negative to positive at x = ¢, then f(c)
is a local minimum.

3. If f/(x) doesn't change sign, then it's neither a min or a max.



Example

Find the local extrema of f(x) = 3x* + 4x3 — x2 — 2x over the
whole real line.
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Find the local extrema of f(x) = 3x* + 4x3 — x2 — 2x over the
whole real line.

Calculate f'(x):
f'(x) = 12x3 4+ 12x% — 2x — 2 = 12(x + 1)(x — 1/v6)(x + 1/V/6)

-- 0+++0 --- +++

N/

\_|J

A\ 4

Y



Example

x*+1

Find the local extrema of f(x) = ——5— over the whole real line.
X

[Hint: find a common denominator after taking a derivative.]
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Concavity

Q. How can we measure when a function is concave up or down?

Concave up Concave down
f'(x) is increasing f'(x) is decreasing
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Concavity and Inflection Points

Definition: The function f has an inflection point at the point
x = c if f/(c) exists and the concavity changes at x = ¢ from up
to down or vice versa.

v ¥y ¥

/ Concave
Concave upward
downward

Concave
downward

Concave
upward

Concave
downward
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Back to the example f(x) = 3x* + 4x3 — x> — 2x

Find the inflection points of f(x), and where f(x) is concave up or
down.

We calculated f’( ) = 12x3 4+ 12x% — 2x — 2.
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Back to the example f(x) = 3x* + 4x3 — x> — 2x

Find the inflection points of f(x), and where f(x) is concave up or
down.

We calculated f’( ) = 12x3 4+ 12x% — 2x — 2.

- 0+++0 --- +++

N

A 4

So
f(x) = 36x% 4 24x — 2 = (6x — (V6 — 2))(6x + V6 + 2)



Back to the example f(x) = 3x* + 4x3 — x> — 2x

Find the inflection points of f(x), and where f(x) is concave up or
down.

We calculated f’( ) = 12x3 4+ 12x% — 2x — 2.

- 0+++0 --- +++

N

A 4

So
f(x) = 36x% 4 24x — 2 = (6x — (V6 — 2))(6x + V6 + 2)

A
[
[
N



Back to the example f(x) = 3x* + 4x3 — x> — 2x

Find the inflection points of f(x), and where f(x) is concave up or
down.

We calculated f’( ) = 12x3 4+ 12x% — 2x — 2.

- 0+++0 --- +++

N

A 4

So
f(x) = 36x% 4 24x — 2 = (6x — (V6 — 2))(6x + V6 + 2)

+++ 0 ___ 0 44y
—@ ‘9 ; >
A 0 1

A



Back to the example f(x) = 3x* + 4x3 — x> — 2x

Find the inflection points of f(x), and where f(x) is concave up or
down.

We calculated f’( ) = 12x3 4+ 12x% — 2x — 2.

- 0+++0 --- +++

N

A 4

So
f"(x) = 36x% + 24x — 2 = (6x — (V6 — 2))(6x + V6 + 2)
+++ 0 ___ 0 44y
< + @ +@- + >
-1 0 1
C.C.up CC. C.C.up

down



Putting it together

--- 04440 --- 0 +++
< @ @ t @ t >
-1 0 1
\ /max\ /
min min
+++ 0 ___0 +++
< — - >
1 0 1
C.C. CC.u
C.C.up down P




The second derivative test

Theorem
Let f be a function whose second derivative exists on an interval |
containing Xg.

1. If f,(Xo) =0 and f//(X())

2. If f'(x0) =0 and f"(xo) < 0, then f(xo) is a local maximum.

3. If f'(xo) = 0 and f"(xo) <=0, then the test fails, use the
first derivative test to decide.

> 0, then f(xo) is a local minimum.

-’“l (""n) =0 Concave
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Sketch graphs of the following functions:
1. f(x) = —3x> +5x3.

x2 -1
2. f(x) = )

Instructions:

Step 1 Find any places where f(x) is 0 or undefined.

Step 2 Calculate f’(x) and find critical /singular points.

Step 3 Classify where f'(x) is positive/negative, and therefore where
f(x) is increasing/decreasing.

Step 4 Calculate f”(x), and find where it's 0 or undefined.

Step 5 Classify where f”/(x) is positive/negative, and therefore where
f(x) is concave up/down.

Step 6 Calculate limy_, f(x) and lim,_, _ f(x) to see what the
tails are doing.

Hint for 2: Always simplify as a fraction of polynomials after
taking a derivative.
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