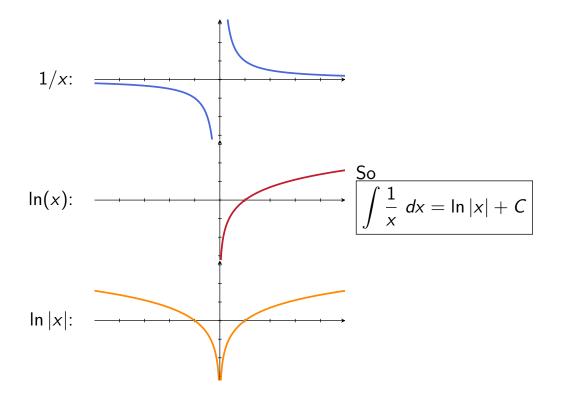
Antiderivative of 1/x



Warm up: Decide whether each statement is true or false by taking a derivative of the RHS and seeing if it's the function inside the integral. **If false**, calculate the real antiderivative.

1.
$$\int \frac{1}{3x+5} dx = \frac{1}{3} \ln|3x+5| + C$$

2.
$$\int e^{4x} dx = e^{4x} + C$$

3.
$$\int \frac{1}{e^x} dx = \ln |e^x| + C$$

[hints: $e^x > 0$, so $\ln |e^x| = \ln (e^x)$. Also, $1/e^x = e^{-x}$]

4.
$$\int \cos(-14x + 32) \ dx = -\frac{1}{14}\sin(-14x + 32) + C$$

5.
$$\int \frac{1}{2x} dx = \frac{1}{2} \ln(2x) + C$$

Review of antiderivatives we know so far

$$\int x^{a} dx = \frac{1}{a+1}x^{a+1} + C$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int e^{x} dx = e^{x} + C$$

$$\int \sin(x) dx = -\cos(x) + C$$

$$\int \cos(x) dx = \sin(x) + C$$

$$\int \cot(x) dx = -\cos(x) + C$$

$$\int \csc(x) \cot(x) dx = -\csc(x) + C$$

$$\int \cot(x) dx = -\cos(x) + C$$

$$\int \cot(x) dx = -\cos(x) + C$$

If F'(x) = f(x) and G'(x) = g(x), and a and b are constants, then

$$\int \left(a*f(x)+b*g(x)\right) dx = a*F(x)+b*G(x)+C$$
and
$$\int f(a*x+b)dx = \frac{1}{a}f(a*x+b)+C$$

Example 1: Suppose a bacteria culture grows at a rate proportional to the number of cells present. If the culture contains 700 cells initially and 900 after 12 hours, how many will be present after 24 hours?

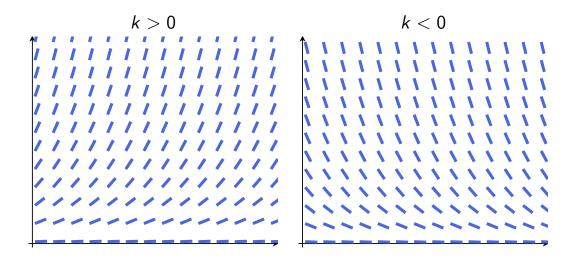
The plan:

- 1. Put it into math, i.e. Write down an initial value problem.
- 1'. Look at slope fields to make sure the IVP makes sense.
- 2. Find the general solution to the IVP.
- 3. Plug in the points and find the particular solution.
- 4. Calculate the value of the solution when t = 24.

Step 1: Put into math. Initial value problem:

$$\frac{dy}{dt} = ky,$$
 $y(0) = 700,$ $y(12) = 900$

$$\frac{dy}{dt} = ky,$$
 $y(0) = 700,$ $y(12) = 900$



$$\frac{dy}{dt} = ky, \qquad y(0) = 700, \quad y(12) = 900$$

Step 2: Find the general solution. To solve: Separate!

$$\int \frac{1}{y} dy = \int k \ dt$$

LHS: $\int \frac{1}{y} dy = \ln |y| + c_1$

RHS: $\int k \, dt = kt + c_2$

Putting it together:

$$\ln |y| = kt + C \implies |y| = e^{kt+C} = e^C * e^k t$$
$$\implies y = \pm e^C * e^k t = Ae^{kt}.$$

General solution: $y = Ae^{kt}$

$$\frac{dy}{dt} = ky, \qquad y(0) = 700, \quad y(12) = 900$$
General solution:
$$y = Ae^{kt}$$

Step 3: Plug in points and find particular solution

$$700 = y(0) = Ae^0 = A$$
, so $y = 700e^{kt}$

$$900 = 700e^{12k} \implies 12k = \ln(900/700) = \ln(9/7)$$

$$\implies k = \frac{1}{12}\ln(9/7) \approx \boxed{0.021}$$

Particular solution: $y = 700e^{t*\frac{1}{12}\ln(9/7)}$

Note: another way to write this is

$$y = 700e^{t*\frac{1}{12}\ln(9/7)} = 700\left(e^{\ln(9/7)}\right)^{t/12} = 700\left(\frac{9}{7}\right)^{t/12}$$

Example 1: Suppose a bacteria culture grows at a rate proportional to the number of cells present. If the culture contains 700 cells initially and 900 after 12 hours, how many will be present after 24 hours?

$$y(24) = 700 \left(\frac{9}{7}\right)^{24/12} = 700 \left(\frac{9}{7}\right)^2 = 8100/7 \approx 1157.14$$

Example 2: Objects heat or cool at a rate proportional to the difference between their temperature and the ambient temperature. Suppose a pie is pulled out of the oven (heated to 370°F), and put into a room that's 70°F. After 10 minutes, the center of the pie is 340°F.

- (a) How hot is the pie after 20 minutes?
- (b) How long will it take for the center of the pie to cool to 100°F?

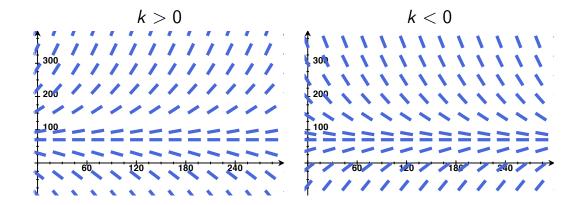
The plan:

- 1. Put it into math, i.e. Write down an initial value problem.
- 2. Find the general solution to the IVP.
- 3. Plug in the points and find the particular solution.
- 4. Calculate the value of the solution when t = 20.
- **5**. Solve for *t* when the solution is equal to 100.

Step 1: Put into math. Initial value problem:

$$\frac{dy}{dt} = k(y - 70),$$
 $y(0) = 370,$ $y(10) = 340$

IVP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$



IVP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$

Step 2: Find the general solution. To solve: Separate!

$$\int \frac{1}{y - 70} dy = \int k \ dt$$

LHS: $\int \frac{1}{y-70} dy = \ln|y-70| + c_1$,

RHS: $\int kdt = kt + c_2$

Putting it together: $\ln |y - 70| = kt + c$ (where $c = c_2 - c_1$). So

$$y - 70 = \pm e^{kt+c} = \pm e^c * e^{kt} = Ae^{kt}$$
 where $A = \pm e^c$,

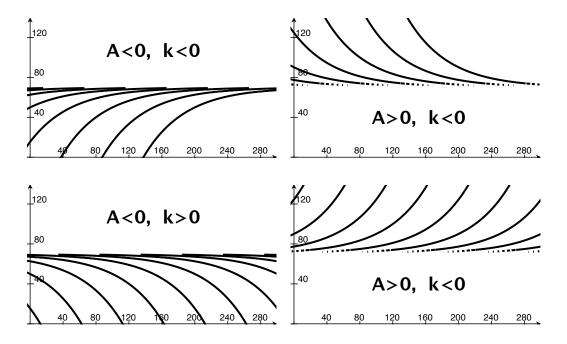
and so

$$y = Ae^{kt} + 70$$

IVP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$

General solution: $y = Ae^{kt} + 70$

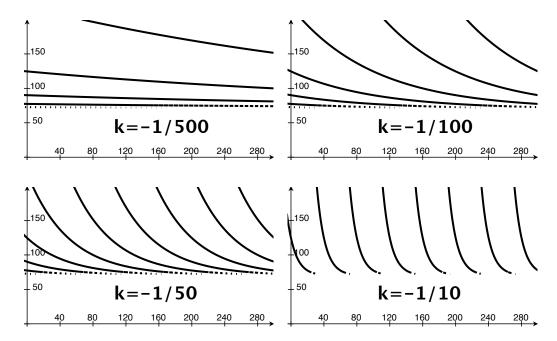
What do we expect from k and A? A > 0, k < 0



IVP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$

General solution: $y = Ae^{kt} + 70$

What do we expect from k and A? A > 0, k < 0, and k small



IVP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$
General solution: $y = Ae^{kt} + 70$

What do we expect from k and A? A > 0, k < 0, and k small

Step 3: Plug in points and find particular solution

$$370 = y(0) = Ae^{0} + 70,$$
 so $\boxed{A = 300}$

$$340 = y(10) = 300e^{k*10} + 70$$

so
$$k = \frac{1}{10} \ln \left(\frac{350 - 70}{300} \right) = \ln(.9)/10 \approx -0.0105$$
.

So the particular solution is

$$y = 300e^{t*\ln(.9)/10} + 70$$

Example 2: Objects heat or cool at a rate proportional to the difference between their temperature and the ambient temperature. Suppose a pie is pulled out of the oven (heated to 370°F), and put into a room that's 70°F. After 10 minutes, the center of the pie is 340°F.

- (a) How hot is the pie after 20 minutes?
- (b) How long will it take for the center of the pie to cool to 100° F?

Particular solution: $y = 300e^{t*ln(.9)/10} + 70$

Answers:

(a)
$$y(20) = 300e^{20*\ln(.9)/10} + 70 = \boxed{313}$$

(b)
$$100 = 300e^{t*\ln(.9)/10} + 70$$

So
$$e^{t*\ln(.9)/10}=30/300=1/10$$
, and so
$$t=\frac{10}{\ln(.9)}\ln(.1)\approx \boxed{218.543}$$

Example 3: The isotope thorium-239 decays at a rate proportional to the amount present, and has a half-life of 24.1 days. How long does 10 grams of thorium-234 take to decay to 1 gram?

"Half-life": The time it takes for an amount of stuff to halve in size.

IVP:
$$\frac{dy}{dt} = ky$$
, $y(0) = 10$, $y(24.1) = \frac{1}{2}10$.

Question: What is t when y(t) = 1?

To do:

Separate to get general solution; Plug in points to get specific solution; Solve y(t) = 1 for t