Modeling with Differential Equations:
 Introduction to the Issues

$$
10 / 26 / 2011
$$

Goal:

Given an equation relating a variable (e.g. x), a function (e.g. y), and its derivatives $\left(y^{\prime}, y^{\prime \prime}, \ldots\right)$, what is y ?
i.e. How do I solve for y ?

Goal:

Given an equation relating a variable (e.g. x), a function (e.g. y), and its derivatives $\left(y^{\prime}, y^{\prime \prime}, \ldots\right)$, what is y ?
i.e. How do I solve for y ?

Why?
Many physical and biological systems can be modeled with differential equations. Also, it can be a lot harder to model a function long term than it is to measure how something changes as the system goes from one state to another.

Some examples

Obvervation: The rate of increase of a bacterial culture is proportional to the number of bacteria present at that time.

Obvervation: The motion of a mass on a spring is given by two opposing forces: (1) the force exerted by the mass in motion ($F=m a=m \frac{d^{2}}{d t^{2}} D$) and (2) the force exerted by the spring, proportional to the displacement from equilibrium $(F=k D)$.

Some examples

Obvervation: The rate of increase of a bacterial culture is proportional to the number of bacteria present at that time.
Equation: $\frac{d P}{d t}=k P$

Obvervation: The motion of a mass on a spring is given by two opposing forces: (1) the force exerted by the mass in motion ($F=m a=m \frac{d^{2}}{d t^{2}} D$) and (2) the force exerted by the spring, proportional to the displacement from equilibrium $(F=k D)$.
Equation: $m * \frac{d^{2}}{d t^{2}} D=-k D$

Some examples

Obvervation: The rate of increase of a bacterial culture is proportional to the number of bacteria present at that time.
Equation: $\frac{d P}{d t}=k P$
Solution: $P=A e^{k t}$, where A is a constant.
(We did this in lecture 12)
Obvervation: The motion of a mass on a spring is given by two opposing forces: (1) the force exerted by the mass in motion ($F=m a=m \frac{d^{2}}{d t^{2}} D$) and (2) the force exerted by the spring, proportional to the displacement from equilibrium $(F=k D)$. Equation: $m * \frac{d^{2}}{d t^{2}} D=-k D$
Solution: $D=A \cos (t * \sqrt{k / m})+B \sin (t * \sqrt{k / m})$, where A and B are constants.
(We did this in lecture 14 , where $k / m=1$)

Slope Fields

If you can write your differential equation like

$$
\frac{d y}{d x}=F(x, y)
$$

then you really have a way of saying
"If I'm standing at the point (a, b), then I should move from here with slope $F(a, b)$."

Slope Fields

If you can write your differential equation like

$$
\frac{d y}{d x}=F(x, y)
$$

then you really have a way of saying
"If I'm standing at the point (a, b), then I should move from here with slope $F(a, b)$."

Some examples:

$$
\begin{gathered}
\frac{d y}{d x}=-\frac{x}{y} \\
\frac{d P}{d t}=k P \\
\frac{d x}{d t}=t^{2} \sin (x t)+x^{2}
\end{gathered}
$$

Slope Fields

If you can write your differential equation like

$$
\frac{d y}{d x}=F(x, y)
$$

then you really have a way of saying
"If I'm standing at the point (a, b), then I should move from here with slope $F(a, b)$."

Some examples:

$$
\begin{gathered}
\frac{d y}{d x}=-\frac{x}{y} \\
\frac{d P}{d t}=k P \\
\frac{d x}{d t}=t^{2} \sin (x t)+x^{2}
\end{gathered}
$$

Some non-examples:

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{x}{y}+\frac{d^{2} y}{d x^{2}} \\
& \frac{d P}{d t} * \frac{d^{2} P}{d t^{2}}=k P \\
& m * \frac{d^{2} D}{d t^{2}}=-k D
\end{aligned}
$$

Slope field:

x	y	$\frac{d y}{d x}=-x / y$
0	1	
0	-1	
1	1	
1	-1	
-1	1	
-1	-1	
2	1	
1	2	
-2	0	

Slope field:

x	y	$\frac{d y}{d x}=-x / y$
0	1	0
0	-1	
1	1	
1	-1	
-1	1	
-1	-1	
2	1	
1	2	
-2	0	

Slope field:

x	y	$\frac{d y}{d x}=-x / y$
0	1	0
0	-1	0
1	1	
1	-1	
-1	1	
-1	-1	
2	1	
1	2	
-2	0	

Slope field:

x	y	$\frac{d y}{d x}=-x / y$
0	1	0
0	-1	0
1	1	-1
1	-1	
-1	1	
-1	-1	
2	1	
1	2	
-2	0	

Slope field:

x	y	$\frac{d y}{d x}=-x / y$
0	1	0
0	-1	0
1	1	-1
1	-1	1
-1	1	
-1	-1	
2	1	
1	2	
-2	0	

Slope field:

x	y	$\frac{d y}{d x}=-x / y$
0	1	0
0	-1	0
1	1	-1
1	-1	1
-1	1	1
-1	-1	
2	1	
1	2	
-2	0	

Slope field:

x	y	$\frac{d y}{d x}=-x / y$
0	1	0
0	-1	0
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1
2	1	
1	2	
-2	0	

Slope field:

$$
\begin{array}{c|c|c}
x & y & \frac{d y}{d x}=-x / y \\
\hline 0 & 1 & 0 \\
0 & -1 & 0 \\
1 & 1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & 1 \\
-1 & -1 & -1 \\
2 & 1 & -2 \\
1 & 2 & \\
-2 & 0 &
\end{array}
$$

Slope field:

$$
\begin{array}{c|c|c}
x & y & \frac{d y}{d x}=-x / y \\
\hline 0 & 1 & 0 \\
0 & -1 & 0 \\
1 & 1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & 1 \\
-1 & -1 & -1 \\
2 & 1 & -2 \\
1 & 2 & -1 / 2 \\
-2 & 0 &
\end{array}
$$

Slope field:

x	y	$\frac{d y}{d x}=-x / y$
0	1	0
0	-1	0
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1
2	1	-2
1	2	$-1 / 2$
-2	0	undef

Slope field:

x	y	$\frac{d y}{d x}=-x / y$
0	1	0
0	-1	0
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1
2	1	-2
1	2	$-1 / 2$
-2	0	undef

Slope field:

x	y	$\frac{d y}{d x}=-x / y$
0	1	0
0	-1	0
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1
2	1	-2
1	2	$-1 / 2$
-2	0	undef

Slope field:

x	y	$\frac{d y}{d x}=-x / y$
0	1	0
0	-1	0
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1
2	1	-2
1	2	$-1 / 2$
-2	0	undef

Slope field:

Arrows point in the direction of semicirles! $y= \pm \sqrt{r^{2}-x^{2}}$?

Slope field:

x	y	$\frac{d y}{d x}=-x / y$
0	1	0
0	-1	0
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1
2	1	-2
1	2	$-1 / 2$
-2	0	undef

Arrows point in the direction of semicirles! $y= \pm \sqrt{r^{2}-x^{2}}$?

Check: $\quad \frac{d}{d x} \pm \sqrt{r^{2}-x^{2}}=\frac{-2 x}{ \pm 2 \sqrt{r^{2}-x^{2}}}$

Slope field:

x	y	$\frac{d y}{d x}=-x / y$
0	1	0
0	-1	0
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1
2	1	-2
1	2	$-1 / 2$
-2	0	undef

Arrows point in the direction of semicirles! $y= \pm \sqrt{r^{2}-x^{2}}$?

Check: $\quad \frac{d}{d x} \pm \sqrt{r^{2}-x^{2}}=\frac{-2 x}{ \pm 2 \sqrt{r^{2}-x^{2}}}=-\frac{x}{y}$

Solving explicitly (get a formula!)

We've done...

1. Get lucky
"what's a function you know whose derivative blah blah ..."
2. Differential equations of the form

$$
\frac{d y}{d x}=f(x)
$$

Find the antiderivative!
Today, we'll add
3. Differential equations of the form

$$
\frac{d y}{d x}=f(x) * g(y)
$$

Use "Separation of Variables"

Separable Equations

A separable differential equation is one of the form

$$
\frac{d y}{d x}=f(x) \cdot g(y) .
$$

Separable Equations

A separable differential equation is one of the form

$$
\frac{d y}{d x}=f(x) \cdot g(y)
$$

Some examples:

$$
\begin{gathered}
\frac{d y}{d x}=-\frac{x}{y}=(-x) *\left(\frac{1}{y}\right) \\
\frac{d x}{d t}=t^{2} \sec (x)
\end{gathered}
$$

Separable Equations

A separable differential equation is one of the form

$$
\frac{d y}{d x}=f(x) \cdot g(y)
$$

Some examples:

$$
\begin{gathered}
\frac{d y}{d x}=-\frac{x}{y}=(-x) *\left(\frac{1}{y}\right) \\
\frac{d x}{d t}=t^{2} \sec (x)
\end{gathered}
$$

Some non-examples:

$$
\begin{aligned}
& \frac{d y}{d x}=x+y \\
& \frac{d x}{d t}=\frac{t+x}{x t^{2}}
\end{aligned}
$$

Separable Equations

A separable differential equation is one of the form

$$
\frac{d y}{d x}=f(x) \cdot g(y)
$$

Some examples:

$$
\begin{gathered}
\frac{d y}{d x}=-\frac{x}{y}=(-x) *\left(\frac{1}{y}\right) \\
\frac{d x}{d t}=t^{2} \sec (x)
\end{gathered}
$$

Some non-examples:

$$
\begin{aligned}
& \frac{d y}{d x}=x+y \\
& \frac{d x}{d t}=\frac{t+x}{x t^{2}}
\end{aligned}
$$

A separable equation is one in which we can put all of the y 's and dy's (as products) on one side of the equation and all of the x 's and $\mathrm{d} x$'s (as products) on the other...

Examples

(1) If $\frac{d y}{d x}=-\frac{x}{y}$, then $y d y=-x d x$.

Examples

$$
\begin{aligned}
& \text { (1) If } \frac{d y}{d x}=-\frac{x}{y}, \quad \text { then } y d y=-x d x \\
& \text { (2) If } \frac{d x}{d t}=t^{2} \sec (x), \text { then } \cos (x) d x=t^{2} d t
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { (1) If } \frac{d y}{d x}=-\frac{x}{y}, \quad \text { then } y d y=-x d x \\
& \text { (2) If } \frac{d x}{d t}=t^{2} \sec (x), \text { then } \cos (x) d x=t^{2} d t
\end{aligned}
$$

To solve (1), integrate both sides:

$$
\int y d y=\int-x d x
$$

Examples

$$
\begin{aligned}
& \text { (1) If } \frac{d y}{d x}=-\frac{x}{y}, \quad \text { then } y d y=-x d x \\
& \text { (2) If } \frac{d x}{d t}=t^{2} \sec (x), \text { then } \cos (x) d x=t^{2} d t
\end{aligned}
$$

To solve (1), integrate both sides:

$$
y^{2} / 2+c_{2}=\int y d y=\int-x d x=-x^{2} / 2+c_{1}
$$

Examples

$$
\begin{aligned}
& \text { (1) If } \frac{d y}{d x}=-\frac{x}{y}, \quad \text { then } y d y=-x d x \\
& \text { (2) If } \frac{d x}{d t}=t^{2} \sec (x), \text { then } \cos (x) d x=t^{2} d t
\end{aligned}
$$

To solve (1), integrate both sides:

$$
y^{2} / 2+c_{2}=\int y d y=\int-x d x=-x^{2} / 2+c_{1}
$$

So

$$
y= \pm \sqrt{2\left(-x^{2} / 2+c_{1}-c_{2}\right)}= \pm \sqrt{a-x^{2}}
$$

where $a=2\left(c_{1}-c_{2}\right)$.

Examples

Slope field for $\frac{d y}{d x}=-\frac{x}{y}$:

Suggested and checked $y= \pm \sqrt{r^{2}-x^{2}}$

Examples

$$
\begin{aligned}
& \text { (1) If } \frac{d y}{d x}=-\frac{x}{y}, \quad \text { then } y d y=-x d x \\
& \text { (2) If } \frac{d x}{d t}=t^{2} \sec (x), \text { then } \cos (x) d x=t^{2} d t
\end{aligned}
$$

To solve (1), integrate both sides:

$$
y^{2} / 2+c_{2}=\int y d y=\int-x d x=-x^{2} / 2+c_{1}
$$

So

$$
y= \pm \sqrt{2\left(-x^{2} / 2+c_{1}-c_{2}\right)}= \pm \sqrt{a-x^{2}}
$$

where $a=2\left(c_{1}-c_{2}\right)$.
Find an implicit formula for (2) (with no derivatives left in it)

How many solutions are there?

Existence?

How do I know I even get a solution?
An important result in the theory of differential equations is Peano's Existence Theorem, which states...

$$
\begin{aligned}
& \text { If } \frac{d y}{d x}=F(x, y) \text { and } y(a)=b, \\
& \text { where } F(x, y) \text { is continuous in a domain } D, \\
& \text { then there is always at least one solution in the } \\
& \text { domain, and any such solution is differentiable. }
\end{aligned}
$$

Uniqueness?

How do we know that there is not another solution?
If, additionally, $F(x, y)=f(x) g(y)$, and if g^{\prime}
and f^{\prime} are continuous, then solution is unique.
(1) Match the differential equations to the slope fields:
(A) $\frac{d y}{d x}=\frac{1}{5} x y$
(B) $\frac{d y}{d x}=x+y$
(C) $\frac{d y}{d x}=\cos (x)$
(D) $\frac{d y}{d x}=\cos (y)$
(a)
(b)
(c)
(d)

(2) Solve the initial value problems

$$
\begin{aligned}
& \text { (a) } \frac{d y}{d x}=\frac{1}{5} x y, \quad y(0)=2 \\
& \text { (b) } \frac{d y}{d x}=\sin (x) / y^{2}, \quad y(0)=3
\end{aligned}
$$

(1)
$A:(c) \quad B:(d) C$ (b) $D:(a)$
(2)
(a) $\frac{d y}{d x}=\frac{1}{5} x y \rightarrow \frac{1}{4} d y=\frac{1}{5} x d x$
so

$$
\int \frac{1}{4} d y=\int \frac{1}{5} x d x
$$

thos

$$
\begin{aligned}
\ln (y) & =\frac{1}{10} x^{2}+d \\
\Rightarrow y & =e^{\frac{1}{10} x^{2}+d} \\
& =e^{1 / 10 x^{2}} * e^{c}
\end{aligned}
$$

if $y(0)=2$, then

$$
2=e^{\frac{1}{12} \cdot 0} * e^{d}=e^{d}
$$

So $y=e^{\frac{10}{10} x^{2}} * 2 \quad$ specific
(2) b

$$
\frac{d y}{d x}=\sin (x) y^{2} \Rightarrow y^{2} d y=\sin (x) d x
$$

So

$$
\int y^{2} d y=\int \sin (x) d x
$$

So

$$
\begin{aligned}
& \frac{1}{3} y^{3}=-\cos (x)+d \\
& \Rightarrow y=\sqrt[3]{3(-\cos (x)+d)}
\end{aligned}
$$

So since $y(0)=3$,

$$
\begin{aligned}
& 3=\sqrt[3]{3(-1+d)} \\
& q=\frac{3^{3}}{3}=-1+d \\
& \text { so } \quad d=10 \\
& y=\sqrt[3]{3(-\cos (x)+10)}
\end{aligned}
$$

