Related rates

10/24/2011

Example

Suppose you has a 5 m ladder resting against a wall.

Example

Suppose you has a 5 m ladder resting against a wall.

Move the base out at $2 \mathrm{~m} / \mathrm{s}$
How fast does the top move down the wall?

Example

Suppose you has a 5 m ladder resting against a wall.

Move the base out at $2 \mathrm{~m} / \mathrm{s}$
How fast does the top move down the wall?

Example

Suppose you has a 5 m ladder resting against a wall.

Move the base out at $2 \mathrm{~m} / \mathrm{s}: \quad \frac{d x}{d t}=2$
How fast does the top move down the wall? $\frac{d y}{d t}=$??

Example

Suppose you has a 5 m ladder resting against a wall.

Move the base out at $2 \mathrm{~m} / \mathrm{s}: \quad \frac{d x}{d t}=2$
How fast does the top move down the wall? $\frac{d y}{d t}=$??
To solve, we need to relate the variables:

Example

Suppose you has a 5 m ladder resting against a wall.

Move the base out at $2 \mathrm{~m} / \mathrm{s}: \quad \frac{d x}{d t}=2$
How fast does the top move down the wall? $\frac{d y}{d t}=$??
To solve, we need to relate the variables: $x^{2}+y^{2}=5^{2}$

Example

Suppose you has a 5 m ladder resting against a wall.

Move the base out at $2 \mathrm{~m} / \mathrm{s}: \quad \frac{d x}{d t}=2$
How fast does the top move down the wall? $\frac{d y}{d t}=$??
To solve, we need to relate the variables: $x^{2}+y^{2}=5^{2}$

$$
0 \leq x \leq 5
$$

Problem:

If $x^{2}+y^{2}=5^{2}$ for $0 \leq x \leq 5$, and $\frac{d x}{d t}=2$, what is $\frac{d y}{d t}$?

Problem:

If $x^{2}+y^{2}=5^{2}$ for $0 \leq x \leq 5$, and $\frac{d x}{d t}=2$, what is $\frac{d y}{d t}$?
Differentiate:

$$
\begin{aligned}
0=\frac{d}{d t} 5^{2} & =\frac{d}{d t}\left(x^{2}+y^{2}\right) \\
& =2 x \frac{d x}{d t}+2 y \frac{d y}{d t}
\end{aligned}
$$

Problem:

If $x^{2}+y^{2}=5^{2}$ for $0 \leq x \leq 5$, and $\frac{d x}{d t}=2$, what is $\frac{d y}{d t}$?
Differentiate:

$$
\begin{aligned}
0=\frac{d}{d t} 5^{2} & =\frac{d}{d t}\left(x^{2}+y^{2}\right) \\
& =2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \\
& =2 x * 2+2\left(\sqrt{25-x^{2}}\right) \frac{d y}{d t}
\end{aligned}
$$

Problem:

If $x^{2}+y^{2}=5^{2}$ for $0 \leq x \leq 5$, and $\frac{d x}{d t}=2$, what is $\frac{d y}{d t}$?
Differentiate:

$$
\begin{aligned}
0=\frac{d}{d t} 5^{2} & =\frac{d}{d t}\left(x^{2}+y^{2}\right) \\
& =2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \\
& =2 x * 2+2\left(\sqrt{25-x^{2}}\right) \frac{d y}{d t}
\end{aligned}
$$

So

$$
\frac{d y}{d t}=\frac{-2 x}{\sqrt{25-x^{2}}}
$$

Problem:

If $x^{2}+y^{2}=5^{2}$ for $0 \leq x \leq 5$, and $\frac{d x}{d t}=2$, what is $\frac{d y}{d t}$?
Differentiate:

$$
\begin{aligned}
0=\frac{d}{d t} 5^{2} & =\frac{d}{d t}\left(x^{2}+y^{2}\right) \\
& =2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \\
& =2 x * 2+2\left(\sqrt{25-x^{2}}\right) \frac{d y}{d t}
\end{aligned}
$$

So

$$
\frac{d y}{d t}=\frac{-2 x}{\sqrt{25-x^{2}}}
$$

Notice:
(1) $\frac{d y}{d t}<0$ (y is decreasing) and
(2) $\lim _{x \rightarrow 5^{-}} \frac{d y}{d t} \rightarrow-\infty$

Example

Suppose you have a sphere whose radius is growing at a rate of $5 \mathrm{in} / \mathrm{s}$. How fast is the volume growing when the radius is 3 in ?

Example

Suppose you have a sphere whose radius is growing at a rate of $5 \mathrm{in} / \mathrm{s}$. How fast is the volume growing when the radius is 3 in ?

Relating equation: $V=\frac{4}{3} \pi r^{3}$

Example

Suppose you have a sphere whose radius is growing at a rate of $5 \mathrm{in} / \mathrm{s}$. How fast is the volume growing when the radius is 3 in ?

Relating equation: $V=\frac{4}{3} \pi r^{3}$
Take a derivative: $\frac{d V}{d t}=\frac{4}{3} \pi * 3 r^{2} * \frac{d r}{d t}$

Example

Suppose you have a sphere whose radius is growing at a rate of $5 \mathrm{in} / \mathrm{s}$. How fast is the volume growing when the radius is 3 in ?

Relating equation: $V=\frac{4}{3} \pi r^{3}$
Take a derivative: $\frac{d V}{d t}=\frac{4}{3} \pi * 3 r^{2} * \frac{d r}{d t}$
Substitute in the known values:

$$
\frac{d V}{d t}=4 \pi * 3^{2} * 5=4 * 9 * 5 \pi \mathrm{in}^{3} / \mathrm{s}
$$

Take an upside-down cone-shaped bowl, with a radius of 4 in at the top and a total height of 3 in fill it with water at a rate of $1 / 2$ $\mathrm{in}^{3} / \mathrm{min}$. How fast is the height of water increasing when $\mathrm{h}=2 \mathrm{in}$?

Take an upside-down cone-shaped bowl, with a radius of 4 in at the top and a total height of 3 in fill it with water at a rate of $1 / 2$ $\mathrm{in}^{3} / \mathrm{min}$. How fast is the height of water increasing when $\mathrm{h}=2 \mathrm{in}$?

Volume of a cone: $V=\frac{\pi}{3} R^{2} H$

Take an upside-down cone-shaped bowl, with a radius of 4 in at the top and a total height of 3 in fill it with water at a rate of $1 / 2$ $\mathrm{in}^{3} / \mathrm{min}$. How fast is the height of water increasing when $\mathrm{h}=2 \mathrm{in}$?

Volume of a cone: $V=\frac{\pi}{3} R^{2} H$
Volume of a water: $V=\frac{\pi}{3} r^{2} h$

Take an upside-down cone-shaped bowl, with a radius of 4 in at the top and a total height of 3 in fill it with water at a rate of $1 / 2$ $\mathrm{in}^{3} / \mathrm{min}$. How fast is the height of water increasing when $\mathrm{h}=2 \mathrm{in}$?

Volume of a cone: $V=\frac{\pi}{3} R^{2} H$
Volume of a water: $V=\frac{\pi}{3} r^{2} h$ Relate r and $h: r / h=4 / 3$ so $r=\frac{4}{3} h$

Take an upside-down cone-shaped bowl, with a radius of 4 in at the top and a total height of 3 in fill it with water at a rate of $1 / 2$ $\mathrm{in}^{3} / \mathrm{min}$. How fast is the height of water increasing when $\mathrm{h}=2 \mathrm{in}$?

Volume of a cone: $V=\frac{\pi}{3} R^{2} H$
Volume of a water: $V=\frac{\pi}{3} r^{2} h$
Relate r and $h: r / h=4 / 3$ so $r=\frac{4}{3} h$
Finally, equation to differentiate: $V=\frac{\pi}{3}\left(\frac{4}{3} h\right)^{2} h=\frac{\pi 16}{27} h^{3}$

Take an upside-down cone-shaped bowl, with a radius of 4 in at the top and a total height of 3 in fill it with water at a rate of $1 / 2$ $\mathrm{in}^{3} / \mathrm{min}$. How fast is the height of water increasing when $\mathrm{h}=2 \mathrm{in}$?

Volume of a cone: $V=\frac{\pi}{3} R^{2} H$
Volume of a water: $V=\frac{\pi}{3} r^{2} h$
Relate r and $h: r / h=4 / 3$ so $r=\frac{4}{3} h$
Finally, equation to differentiate: $V=\frac{\pi}{3}\left(\frac{4}{3} h\right)^{2} h=\frac{\pi 16}{27} h^{3}$

$$
\frac{d V}{d t}=\frac{\pi 16}{27} * 3 h^{2} \frac{d h}{d t}
$$

Take an upside-down cone-shaped bowl, with a radius of 4 in at the top and a total height of 3 in fill it with water at a rate of $1 / 2$ $\mathrm{in}^{3} / \mathrm{min}$. How fast is the height of water increasing when $\mathrm{h}=2 \mathrm{in}$?

Volume of a cone: $V=\frac{\pi}{3} R^{2} H$
Volume of a water: $V=\frac{\pi}{3} r^{2} h$
Relate r and $h: r / h=4 / 3$ so $r=\frac{4}{3} h$
Finally, equation to differentiate: $V=\frac{\pi}{3}\left(\frac{4}{3} h\right)^{2} h=\frac{\pi 16}{27} h^{3}$

$$
\frac{1}{2}=\frac{d V}{d t}=\frac{\pi 16}{27} * 3 h^{2} \frac{d h}{d t}=\frac{\pi 16}{9}(2)^{2} \frac{d h}{d t}
$$

Take an upside-down cone-shaped bowl, with a radius of 4 in at the top and a total height of 3 in fill it with water at a rate of $1 / 2$ $\mathrm{in}^{3} / \mathrm{min}$. How fast is the height of water increasing when $\mathrm{h}=2 \mathrm{in}$?

Volume of a cone: $V=\frac{\pi}{3} R^{2} H$
Volume of a water: $V=\frac{\pi}{3} r^{2} h$
Relate r and $h: r / h=4 / 3$ so $r=\frac{4}{3} h$
Finally, equation to differentiate: $V=\frac{\pi}{3}\left(\frac{4}{3} h\right)^{2} h=\frac{\pi 16}{27} h^{3}$

$$
\frac{1}{2}=\frac{d V}{d t}=\frac{\pi 16}{27} * 3 h^{2} \frac{d h}{d t}=\frac{\pi 16}{9}(2)^{2} \frac{d h}{d t}
$$

So $\left.\frac{d h}{d t}\right|_{h=2}=\frac{9}{128 \pi}$

Strategy:

1. Find an equation which relates the functions you need.

Strategy:

1. Find an equation which relates the functions you need.
(a) Sometimes you'll need to draw pictures.

Strategy:

1. Find an equation which relates the functions you need.
(a) Sometimes you'll need to draw pictures.
(b) Sometimes you'll have to reduce the number of variables/functions to get it down to
(i) the function from the rate you know,
(ii) the function from the rate you want, and
(iii) maybe the variable from the rate you know and want (t in the last 3 examples).

Strategy:

1. Find an equation which relates the functions you need.
(a) Sometimes you'll need to draw pictures.
(b) Sometimes you'll have to reduce the number of variables/functions to get it down to
(i) the function from the rate you know,
(ii) the function from the rate you want, and
(iii) maybe the variable from the rate you know and want (t in the last 3 examples).
2. Take a derivative using implicit differentiation.

Strategy:

1. Find an equation which relates the functions you need.
(a) Sometimes you'll need to draw pictures.
(b) Sometimes you'll have to reduce the number of variables/functions to get it down to
(i) the function from the rate you know,
(ii) the function from the rate you want, and
(iii) maybe the variable from the rate you know and want (t in the last 3 examples).
2. Take a derivative using implicit differentiation.
3. Plug in the values you know.

Strategy:

1. Find an equation which relates the functions you need.
(a) Sometimes you'll need to draw pictures.
(b) Sometimes you'll have to reduce the number of variables/functions to get it down to
(i) the function from the rate you know,
(ii) the function from the rate you want, and
(iii) maybe the variable from the rate you know and want (t in the last 3 examples).
2. Take a derivative using implicit differentiation.
3. Plug in the values you know.
4. Solve for the rate you want.
