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The Derivative of y = ex

Recall!
ex is the unique exponential function whose slope at x = 0 is 1:
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The Chain Rule

Theorem
Let u be a function of x. Then

d

dx
eu = eu

du

dx
.



Examples

Calculate...

1. d
dx e17x

= 17e17x

2. d
dx esin x

= cos(x)esin x

3. d
dx e

√
x2+x

= 2x+1
2
√
x2+x

e
√
x2+1

Notice, every time:

d

dx
ef (x) = f ′(x)ef (x)
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The Derivative of y = ln x

To find the derivative of ln(x), use implicit differentiation!

Remember:
y = ln x =⇒ ey = x

Take a derivative of both sides of ey = x to get
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Does it make sense?

d
dx ln(x) = 1

x

f (x) = ln(x) 1 2 3 4

-1

1

f (x) = 1
x

1 2 3 4

1

2

3
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The Calculus Standards: ex and ln x

To get the other derivatives:

ax = ex ln a

loga x =
ln x

ln a

For example:

d

dx
2x

=
d

dx
ex ln(2) = ln(2) ∗ ex ln(2) = ln(2) ∗ 2x

(ln(2) is a constant!!!)

You try:
d

dx
log2(x) =

1

ln(2) ∗ x
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Differential equations

Suppose y is some mystery function of x and satisfies the equation

y ′ = ky

Goal: What is y??

1. If k = 1, then y = ex has this property and thus solves the
equation.

2. For any k , y = ekx solves the equation too!

This equation, d
dx y = ky is an example of a differential equation.
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