Derivatives of Exponential and Logarithm
 Functions

10/17/2011

The Derivative of $y=e^{x}$

Recall!

e^{x} is the unique exponential function whose slope at $x=0$ is 1 :

The Derivative of $y=e^{x} \ldots$

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

$$
\begin{aligned}
\frac{d}{d x} e^{x} & =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h} \\
& =e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h} \\
& =e^{x} * 1
\end{aligned}
$$

So

$$
\frac{d}{d x} e^{x}=e^{x}
$$

Examples

Calculate...

1. $\frac{d}{d x} e^{17 x}$
2. $\frac{d}{d x} e^{\sin x}$
3. $\frac{d}{d x} e^{\sqrt{x^{2}+x}}$

Notice, every time:

$$
\frac{d}{d x} e^{f(x)}=f^{\prime}(x) e^{f(x)}
$$

The Derivative of $y=\ln x$

To find the derivative of $\ln (x)$, use implicit differentiation! Remember:

$$
y=\ln x \quad \Longrightarrow \quad e^{y}=x
$$

Take a derivative of both sides of $e^{y}=x$ to get

$$
\frac{d y}{d x} e^{y}=1
$$

So

$$
\frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{e^{\ln (x)}}=\frac{1}{x}
$$

$$
\frac{d}{d x} \ln (x)=\frac{1}{x}
$$

Does it make sense?

$$
\frac{d}{d x} \ln (x)=\frac{1}{x}
$$

$$
f(x)=\ln (x)
$$

$$
f(x)=\frac{1}{x}
$$

Examples

Calculate

1. $\frac{d}{d x} \ln x^{2}$
2. $\frac{d}{d x} \ln \left(\sin \left(x^{2}\right)\right)$

Notice, every time:

$$
\frac{d}{d x} \ln (f(x))=\frac{f^{\prime}(x)}{f(x)}
$$

The Calculus Standards: e^{x} and $\ln x$

To get the other derivatives:

$$
\begin{gathered}
a^{x}=e^{x \ln a} \\
\log _{a} x=\frac{\ln x}{\ln a}
\end{gathered}
$$

For example:

$$
\frac{d}{d x} 2^{x}=\frac{d}{d x} e^{x \ln (2)}=\ln (2) * e^{x \ln (2)}=\ln (2) * 2^{x}
$$

$(\ln (2)$ is a constant!!!)
You try: $\frac{d}{d x} \log _{2}(x)$

Differential equations

Suppose y is some mystery function of x and satisfies the equation

$$
y^{\prime}=k y
$$

Goal: What is y ??

1. If $k=1$, then $y=e^{x}$ has this property and thus solves the equation.
2. For any $k, y=e^{k x}$ solves the equation too!

This equation, $\frac{d}{d x} y=k y$ is an example of a differential equation.

