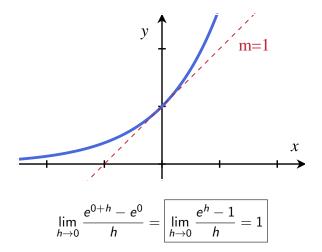
Derivatives of Exponential and Logarithm Functions

10/17/2011

The Derivative of $y = e^x$

Recall!

 e^x is the unique exponential function whose slope at x = 0 is 1:



The Derivative of $y = e^{x}$...

$$\lim_{h\to 0}\frac{e^h-1}{h}=1$$

$$\frac{d}{dx}e^{x} = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h}$$
$$= \lim_{h \to 0} \frac{e^{x} (e^{h} - 1)}{h}$$
$$= e^{x} \lim_{h \to 0} \frac{e^{h} - 1}{h}$$
$$= e^{x} * 1$$

$$\frac{d}{dx}e^{x} = e^{x}$$

So

Examples

Calculate...

- 1. $\frac{d}{dx}e^{17x}$
- 2. $\frac{d}{dx}e^{\sin x}$
- 3. $\frac{d}{dx}e^{\sqrt{x^2+x}}$

Notice, every time:

$$\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)}$$

The Derivative of $y = \ln x$

To find the derivative of ln(x), use implicit differentiation! Remember:

$$y = \ln x \implies e^y = x$$

Take a derivative of both sides of $e^{y} = x$ to get

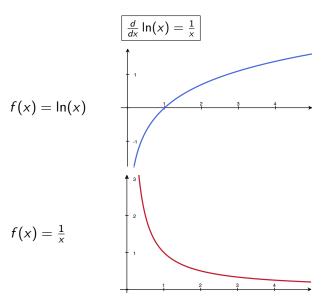
$$\frac{dy}{dx}e^y = 1$$

So

$$\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln(x)}} = \frac{1}{x}$$

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

Does it make sense?



Examples

Calculate 1. $\frac{d}{dx} \ln x^2$

 $2. \quad \frac{d}{dx} \ln(\sin(x^2))$

Notice, every time:

$$\frac{d}{dx}\ln(f(x)) = \frac{f'(x)}{f(x)}$$

The Calculus Standards: e^x and $\ln x$

To get the other derivatives:

$$a^{x} = e^{x \ln a}$$
$$\log_{a} x = \frac{\ln x}{\ln a}$$

For example:

$$\frac{d}{dx}2^{x} = \frac{d}{dx}e^{x\ln(2)} = \ln(2) * e^{x\ln(2)} = \ln(2) * 2^{x}$$

(ln(2) is a constant!!!)

You try:
$$\frac{d}{dx}\log_2(x)$$

Differential equations

Suppose y is some mystery function of x and satisfies the equation

$$y' = ky$$

Goal: What is *y*??

- 1. If k = 1, then $y = e^x$ has this property and thus solves the equation.
- 2. For any k, $y = e^{kx}$ solves the equation too!

This equation, $\frac{d}{dx}y = ky$ is an example of a *differential equation*.