The Mean Value Theorem

Oct 14 2011

The Mean Value Theorem

Theorem

Suppose that f is defined and continuous on a closed interval [a, b], and suppose that f' exists on the open interval (a, b). Then there exists a point c in (a, b) such that

$$\frac{f(b)-f(a)}{b-a}=f'(c).$$

Bad examples

Does the mean value theorem apply to f(x) = |x| on [-1, 1]?

How about to f(x) = |x| on [1, 5]?

Does the mean value theorem apply to f(x) = |x| on [-1, 1]?

(No! Because f(x) is not differentiable at x = 0.)

How about to f(x) = |x| on [1, 5]?

(Yes! Because f(x) = x on this domain, which is differentiable.)

Under what circumstances does the Mean Value Theorem apply to the function f(x) = 1/x?

Under what circumstances does the Mean Value Theorem apply to the function f(x) = 1/x?

ANY closed interval on the domain!

Let's verify the conclusion of the Mean Value Theorem for the function $f(x) = (x + 1)^3 - 1$ on the interval [-3, 1]...

Let's verify the conclusion of the Mean Value Theorem for the function $f(x) = (x + 1)^3 - 1$ on the interval [-3, 1]...

Optimizing functions!

Optimizing functions!

Some definitions:

- If f is defined on an interval (a, b), then
 - 1. f is *increasing* on (a, b) if, for any two points x_1 and x_2 in (a, b), we get

$$f(x_1) < f(x_2)$$
 whenever $x_1 < x_2$.

2. f is nondecreasing on (a, b) if, for any two points x_1 and x_2 in (a, b), we get

 $f(x_1) \leq f(x_2)$ whenever $x_1 < x_2$.

Optimizing functions!

Some definitions:

- If f is defined on an interval (a, b), then
 - 1. f is *increasing* on (a, b) if, for any two points x_1 and x_2 in (a, b), we get

$$f(x_1) < f(x_2)$$
 whenever $x_1 < x_2$.

f is nondecreasing on (a, b) if, for any two points x₁ and x₂ in (a, b), we get

$$f(x_1) \leq f(x_2)$$
 whenever $x_1 < x_2$.

3. f is decreasing on (a, b) if, for any two points x_1 and x_2 in (a, b), we get

$$f(x_1) > f(x_2)$$
 whenever $x_1 < x_2$.

f is nonincreasing on (a, b) if, for any two points x₁ and x₂ in (a, b), we get

$$f(x_1) \ge f(x_2)$$
 whenever $x1 < x2$.

If f is increasing... i.e. if $f(x_1) \leq f(x_2)$ whenever $x_1 < x_2...$

If
$$f$$
 is increasing...
i.e. if $f(x_1) \leq f(x_2)$ whenever $x_1 < x_2...$

Think about
$$\lim_{h\to 0} \frac{f(x_1+h)-f(x)}{h}$$
.

If f is increasing...
i.e. if
$$f(x_1) \leq f(x_2)$$
 whenever $x_1 < x_2...$

Think about
$$\lim_{h\to 0} \frac{f(x_1+h)-f(x)}{h}$$

It's positive!

If f is increasing...
i.e. if
$$f(x_1) \le f(x_2)$$
 whenever $x_1 < x_2...$

Think about
$$\lim_{h\to 0} \frac{f(x_1+h)-f(x)}{h}$$
.

It's positive!

f is increasing on $(a, b) \implies f'(x)$ is positive f is nondecreasing on $(a, b) \implies f'(x)$ is nonnegative f is decreasing on $(a, b) \implies f'(x)$ is negative f is nonincreasing on $(a, b) \implies f'(x)$ is nonpositive

On what interval is the function $f(x) = x^3 + x + 1$ increasing (decreasing)?

Find the intervals on which the function $f(x) = 2x^3 - 6x^2 - 18x + 1$ is increasing and those on which it is decreasing.

Find the intervals on which the function $f(x) = 2x^3 - 6x^2 - 18x + 1$ is increasing and those on which it is decreasing.

$$f'(x) = 6x^2 - 12x - 18 = 6(x - 3)(x + 1)$$

Find the intervals on which the function $f(x) = 2x^3 - 6x^2 - 18x + 1$ is increasing and those on which it is decreasing.

$$f'(x) = 6x^2 - 12x - 18 = 6(x - 3)(x + 1)$$

If f is continuous on a closed interval [a, b], then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

If f is continuous on a closed interval [a, b], then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

If f is defined in an open interval (a, b) and achieves a maximum (or minimum) value at a point c in (a, b) where f'(c) exists, then f'(c) = 0.

If f is continuous on a closed interval [a, b], then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

If f is defined in an open interval (a, b) and achieves a maximum (or minimum) value at a point c in (a, b) where f'(c) exists, then f'(c) = 0.

For the function $f(x) = 2x^3 - 6x^2 - 18x + 1$, let us find the points in the interval [-4, 4] where the function assumes its maximum and minimum values.

$$f'(x) = 6x^2 - 12x - 18 = 6(x - 3)(x + 1)$$

For the function $f(x) = 2x^3 - 6x^2 - 18x + 1$, let us find the points in the interval [-4, 4] where the function assumes its maximum and minimum values.

 $f'(x) = 6x^2 - 12x - 18 = 6(x - 3)(x + 1)$

x	f(x)
-1	11
3	53
-4	-151
4	-39

For the function $f(x) = 2x^3 - 6x^2 - 18x + 1$, let us find the points in the interval [-4, 4] where the function assumes its maximum and minimum values.

Rolle's Theorem

Theorem

Suppose that the function g is continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If g(a) = 0 and g(b) = 0 then there exists a point c in the open interval (a, b) where g'(c) = 0.

Let's use Rolle's Theorem to show that the equation $x^5 - 3x + 1 = 0$ has exactly three real roots!

Let's use Rolle's Theorem to show that the equation $x^5 - 3x + 1 = 0$ has exactly three real roots!

Many curves are not the graphs of functions.

For example, circle of radius 1 does not pass the "vertical line test" and hence is not the graph of a function.

It is, however, the graph of the equation $x^2 + y^2 = 1!$

Another example: the equation $x^3 - 8xy + y^3 = 1$ cannot be explicitly solved for y as a function of x.

GOAL: Find the derivative of f(x) without explicitly solving the equation.

Think of y as a mystery function. Whenever you have to take it's derivative, just call it y'!

Think of y as a mystery function. Whenever you have to take it's derivative, just call it y'!

Example:

Take the derivative of
$$x^2 + y^2 = 1$$
.

Think of y as a mystery function. Whenever you have to take it's derivative, just call it y'!

Example:

Take the derivative of
$$x^2 + y^2 = 1$$
.

LHS:
$$\frac{d}{dx}(1) = 0$$
, and
RHS: $\frac{d}{dx}(x^2 + y^2) = 2x + 2y * y'$ (chain rule!)

Think of y as a mystery function. Whenever you have to take it's derivative, just call it y'!

Example:

Take the derivative of
$$x^2 + y^2 = 1$$
.

LHS:
$$\frac{d}{dx}(1) = 0$$
, and
RHS: $\frac{d}{dx}(x^2 + y^2) = 2x + 2y * y'$ (chain rule!)

So 2x + 2y * y' = 0... solve for y'!

$$y' = -\frac{x}{y}$$

1. Use implicit differentiation to find y' when $xy^2 + x^2y - 6 = 0$.

2. Find the equation of the tangent line to the graph of $xy^2 + x^2y - 6 = 0$ at the point (1, 2).

Return to the equation $x^3 - 8xy + y^3 = 1$ with which we begin this section. Find the slope at the points on the curve for which x = 1.

Suppose a differentiable function f has an inverse f^{-1} . Find the derivative of f^{-1} .