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The Mean Value Theorem

Theorem
Suppose that f is defined and continuous on a closed interval
[a, b], and suppose that f ′ exists on the open interval (a, b). Then
there exists a point c in (a, b) such that

f (b)− f (a)

b − a
= f ′(c).

a c b



Bad examples

a b a b a b

Discontinuity Discontinuity No derivative
at an endpoint at an interior point at an interior point



Examples

Does the mean value theorem apply to f (x) = |x | on [−1, 1]?

(No! Because f (x) is not differentiable at x = 0.)

How about to f (x) = |x | on [1, 5]?

(Yes! Because f (x) = x on this domain, which is differentiable.)
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Example

Under what circumstances does the Mean Value Theorem apply to
the function f (x) = 1/x?

ANY closed interval on the domain!
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Example

Let’s verify the conclusion of the Mean Value Theorem for the
function f (x) = (x + 1)3 − 1 on the interval [−3, 1]. . .
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Optimizing functions!

Some definitions:
If f is defined on an interval (a, b), then

1. f is increasing on (a, b) if, for any two points x1 and x2 in
(a, b), we get

f (x1) < f (x2) whenever x1 < x2.

2. f is nondecreasing on (a, b) if, for any two points x1 and x2 in
(a, b), we get

f (x1) ≤ f (x2) whenever x1 < x2.

3. f is decreasing on (a, b) if, for any two points x1 and x2 in
(a, b), we get

f (x1) > f (x2) whenever x1 < x2.

4. f is nonincreasing on (a, b) if, for any two points x1 and x2 in
(a, b), we get

f (x1) ≥ f (x2) whenever x1 < x2.
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If f is increasing. . .
i.e. if f (x1) ≤ f (x2) whenever x1 < x2. . .

Think about lim
h→0

f (x1 + h)− f (x)

h
.

It’s positive!

f is increasing on (a, b) =⇒ f ′(x) is positive

f is nondecreasing on (a, b) =⇒ f ′(x) is nonnegative

f is decreasing on (a, b) =⇒ f ′(x) is negative

f is nonincreasing on (a, b) =⇒ f ′(x) is nonpositive
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Examples

On what interval is the function f (x) = x3 + x + 1 increasing
(decreasing)?

-1 1

-3

-2

-1

1

2

3

f ′(x) = 3x2 + 1



Find the intervals on which the function
f (x) = 2x3 − 6x2 − 18x + 1 is increasing and those on which it is
decreasing.

f ′(x) = 6x2 − 12x − 18 = 6(x − 3)(x + 1)

-3 -2 -1 0 1 2 3
+ + + + + + + + + + + +0 0- - - - - - - - - - 
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Find the intervals on which the function
f (x) = 2x3 − 6x2 − 18x + 1 is increasing and those on which it is
decreasing.

f ′(x) = 6x2 − 12x − 18 = 6(x − 3)(x + 1)

-3 -2 -1 0 1 2 3
+ + + + + + + + + + + +0 0- - - - - - - - - - 



f ′(x) :
-3 -2 -1 0 1 2 3

+ + + + + + + + + + + +0 0- - - - - - - - - - 

f (x) :

-3 -2 -1 1 2 3

-40

-20

(-1, 11)

(3,-53)



If f is continuous on a closed interval [a, b], then there is a point in
the interval where f is largest (maximized) and a point where f is
smallest (minimized).

If f is defined in an open interval (a, b) and achieves a maximum
(or minimum) value at a point c in (a, b) where f ′(c) exists, then
f ′(c) = 0.

what’s going on right before c?
what’s going on right after c?

f '(x) is 
negative

f '(x) is 
positive

f '(x) is 
positive

f '(x) is 
negative
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Example

For the function f (x) = 2x3 − 6x2 − 18x + 1, let us find the points
in the interval [−4, 4] where the function assumes its maximum
and minimum values.

f ′(x) = 6x2 − 12x − 18 = 6(x − 3)(x + 1)

x f (x)

−1 11

3 53

−4 −151

4 −39
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Rolle’s Theorem

Theorem
Suppose that the function g is continuous on the closed interval
[a, b] and differentiable on the open interval (a, b). If g(a) = 0 and
g(b) = 0 then there exists a point c in the open interval (a, b)
where g ′(c) = 0.



Let’s use Rolle’s Theorem to show that the equation
x5 − 3x + 1 = 0 has exactly three real roots!

-1 1

-2

-1

1

2

3
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Implicit Differentiation

Many curves are not the graphs of functions.

For example, circle of radius 1 does not pass the “vertical line test”
and hence is not the graph of a function.

It is, however, the graph of the equation x2 + y2 = 1!



Another example: the equation x3 − 8xy + y3 = 1 cannot be
explicitly solved for y as a function of x .

P1

P2

P3

P4

GOAL: Find the derivative of f (x) without explicitly solving
the equation.



Implicit Differentiation

Think of y as a mystery function.
Whenever you have to take it’s derivative, just call it y ′!

Example:
Take the derivative of x2 + y2 = 1.

LHS:
d

dx
(1) = 0, and

RHS:
d

dx
(x2 + y2) = 2x + 2y ∗ y ′ (chain rule!)

So 2x + 2y ∗ y ′ = 0... solve for y ′!

y ′ = −x

y
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y ′ = −x

y

-1 0 1

-1

1



1. Use implicit differentiation to find y ′ when xy2 + x2y − 6 = 0.

2. Find the equation of the tangent line to the graph of
xy2 + x2y − 6 = 0 at the point (1, 2).



Return to the equation x3− 8xy + y3 = 1 with which we begin this
section. Find the slope at the points on the curve for which x = 1.



Suppose a differentiable function f has an inverse f −1. Find the
derivative of f −1.


