The Mean Value Theorem

Oct 142011

The Mean Value Theorem

Theorem

Suppose that f is defined and continuous on a closed interval $[a, b]$, and suppose that f^{\prime} exists on the open interval (a, b). Then there exists a point c in (a, b) such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Bad examples

Discontinuity at an endpoint

Discontinuity at an interior point

No derivative at an interior point

Examples

Does the mean value theorem apply to $f(x)=|x|$ on $[-1,1]$?

How about to $f(x)=|x|$ on $[1,5]$?

Examples

Does the mean value theorem apply to $f(x)=|x|$ on $[-1,1]$?
(No! Because $f(x)$ is not differentiable at $x=0$.)
How about to $f(x)=|x|$ on $[1,5]$?
(Yes! Because $f(x)=x$ on this domain, which is differentiable.)

Example

Under what circumstances does the Mean Value Theorem apply to the function $f(x)=1 / x$?

Example

Under what circumstances does the Mean Value Theorem apply to the function $f(x)=1 / x$?

ANY closed interval on the domain!

Example

Let's verify the conclusion of the Mean Value Theorem for the function $f(x)=(x+1)^{3}-1$ on the interval $[-3,1] \ldots$

Example

Let's verify the conclusion of the Mean Value Theorem for the function $f(x)=(x+1)^{3}-1$ on the interval $[-3,1] \ldots$

Optimizing functions!

Optimizing functions!

Some definitions:
If f is defined on an interval (a, b), then

1. f is increasing on (a, b) if, for any two points x_{1} and x_{2} in (a, b), we get

$$
f\left(x_{1}\right)<f\left(x_{2}\right) \text { whenever } x_{1}<x_{2} .
$$

2. f is nondecreasing on (a, b) if, for any two points x_{1} and x_{2} in (a, b), we get

$$
f\left(x_{1}\right) \leq f\left(x_{2}\right) \text { whenever } x_{1}<x_{2} .
$$

Optimizing functions!

Some definitions:
If f is defined on an interval (a, b), then

1. f is increasing on (a, b) if, for any two points x_{1} and x_{2} in (a, b), we get

$$
f\left(x_{1}\right)<f\left(x_{2}\right) \text { whenever } x_{1}<x_{2} .
$$

2. f is nondecreasing on (a, b) if, for any two points x_{1} and x_{2} in (a, b), we get

$$
f\left(x_{1}\right) \leq f\left(x_{2}\right) \text { whenever } x_{1}<x_{2} .
$$

3. f is decreasing on (a, b) if, for any two points x_{1} and x_{2} in (a, b), we get

$$
f\left(x_{1}\right)>f\left(x_{2}\right) \text { whenever } x_{1}<x_{2}
$$

4. f is nonincreasing on (a, b) if, for any two points x_{1} and x_{2} in (a, b), we get

$$
f\left(x_{1}\right) \geq f\left(x_{2}\right) \text { whenever } x 1<x 2
$$

If f is increasing. .
i.e. if $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ whenever $x_{1}<x_{2} \ldots$

If f is increasing. . .
i.e. if $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ whenever $x_{1}<x_{2} \ldots$

Think about $\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h\right)-f(x)}{h}$.

If f is increasing. . .
i.e. if $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ whenever $x_{1}<x_{2} \ldots$

$$
\text { Think about } \lim _{h \rightarrow 0} \frac{f\left(x_{1}+h\right)-f(x)}{h} \text {. }
$$

It's positive!

If f is increasing. . .
i.e. if $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ whenever $x_{1}<x_{2} \ldots$

$$
\text { Think about } \lim _{h \rightarrow 0} \frac{f\left(x_{1}+h\right)-f(x)}{h} \text {. }
$$

It's positive!
f is increasing on $(a, b) \Longrightarrow f^{\prime}(x)$ is positive f is nondecreasing on $(a, b) \Longrightarrow f^{\prime}(x)$ is nonnegative
f is decreasing on $(a, b) \Longrightarrow f^{\prime}(x)$ is negative f is nonincreasing on $(a, b) \Longrightarrow f^{\prime}(x)$ is nonpositive

Examples

On what interval is the function $f(x)=x^{3}+x+1$ increasing (decreasing)?

$$
f^{\prime}(x)=3 x^{2}+1
$$

Find the intervals on which the function $f(x)=2 x^{3}-6 x^{2}-18 x+1$ is increasing and those on which it is decreasing.

Find the intervals on which the function $f(x)=2 x^{3}-6 x^{2}-18 x+1$ is increasing and those on which it is decreasing.

$$
f^{\prime}(x)=6 x^{2}-12 x-18=6(x-3)(x+1)
$$

Find the intervals on which the function $f(x)=2 x^{3}-6 x^{2}-18 x+1$ is increasing and those on which it is decreasing.

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}-12 x-18=6(x-3)(x+1)
\end{aligned}
$$

If f is continuous on a closed interval $[a, b]$, then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

If f is continuous on a closed interval $[a, b]$, then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

If f is defined in an open interval (a, b) and achieves a maximum (or minimum) value at a point c in (a, b) where $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

If f is continuous on a closed interval $[a, b]$, then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

If f is defined in an open interval (a, b) and achieves a maximum (or minimum) value at a point c in (a, b) where $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

> what's going on right before c ? what's going on right after c ?

Example

For the function $f(x)=2 x^{3}-6 x^{2}-18 x+1$, let us find the points in the interval $[-4,4]$ where the function assumes its maximum and minimum values.

$$
f^{\prime}(x)=6 x^{2}-12 x-18=6(x-3)(x+1)
$$

Example

For the function $f(x)=2 x^{3}-6 x^{2}-18 x+1$, let us find the points in the interval $[-4,4]$ where the function assumes its maximum and minimum values.

$$
f^{\prime}(x)=6 x^{2}-12 x-18=6(x-3)(x+1)
$$

x	$f(x)$
-1	11
3	53
-4	-151
4	-39

Example

For the function $f(x)=2 x^{3}-6 x^{2}-18 x+1$, let us find the points in the interval $[-4,4]$ where the function assumes its maximum and minimum values.

$$
f^{\prime}(x)=6 x^{2}-12 x-18=6(x-3)(x+1)
$$

x	$f(x)$
-1	11
3	53
-4	-151
4	-39

Rolle's Theorem

Theorem

Suppose that the function g is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). If $g(a)=0$ and $g(b)=0$ then there exists a point c in the open interval (a, b) where $g^{\prime}(c)=0$.

Let's use Rolle's Theorem to show that the equation $x^{5}-3 x+1=0$ has exactly three real roots!

Let's use Rolle's Theorem to show that the equation $x^{5}-3 x+1=0$ has exactly three real roots!

Implicit Differentiation

Many curves are not the graphs of functions.

For example, circle of radius 1 does not pass the "vertical line test" and hence is not the graph of a function.

It is, however, the graph of the equation $x^{2}+y^{2}=1$!

Another example: the equation $x^{3}-8 x y+y^{3}=1$ cannot be explicitly solved for y as a function of x.

GOAL: Find the derivative of $f(x)$ without explicitly solving the equation.

Implicit Differentiation

Think of y as a mystery function.
Whenever you have to take it's derivative, just call it y^{\prime} !

Implicit Differentiation

Think of y as a mystery function.
Whenever you have to take it's derivative, just call it y^{\prime} !
Example:
Take the derivative of $x^{2}+y^{2}=1$.

Implicit Differentiation

Think of y as a mystery function.
Whenever you have to take it's derivative, just call it y^{\prime} !
Example:
Take the derivative of $x^{2}+y^{2}=1$.

$$
\begin{aligned}
\text { LHS: } \frac{d}{d x}(1) & =0, \text { and } \\
\text { RHS: } \frac{d}{d x}\left(x^{2}+y^{2}\right) & =2 x+2 y * y^{\prime}(\text { chain rule! })
\end{aligned}
$$

Implicit Differentiation

Think of y as a mystery function.
Whenever you have to take it's derivative, just call it y^{\prime} !
Example:
Take the derivative of $x^{2}+y^{2}=1$.

$$
\begin{aligned}
\text { LHS: } \frac{d}{d x}(1) & =0, \text { and } \\
\text { RHS: } \frac{d}{d x}\left(x^{2}+y^{2}\right) & =2 x+2 y * y^{\prime}(\text { chain rule! })
\end{aligned}
$$

So $2 x+2 y * y^{\prime}=0 \ldots$ solve for y^{\prime} !

$$
y^{\prime}=-\frac{x}{y}
$$

1. Use implicit differentiation to find y^{\prime} when $x y^{2}+x^{2} y-6=0$.
2. Find the equation of the tangent line to the graph of $x y^{2}+x^{2} y-6=0$ at the point $(1,2)$.

Return to the equation $x^{3}-8 x y+y^{3}=1$ with which we begin this section. Find the slope at the points on the curve for which $x=1$.

Suppose a differentiable function f has an inverse f^{-1}. Find the derivative of f^{-1}.

