Differentiation Rules

Oct 102011

Differentiability versus Continuity

Theorem
If $f^{\prime}(a)$ exists, then f is continuous at a.

A function whose derivative exists at every point of an interval is continuous and smooth,
i.e. it has no sharp corners.

Building the Toolbox

Theorem (Scalars)

If $y=f(x)$ is a differentiable function then,

$$
(c \cdot f(x))^{\prime}=c \cdot f^{\prime}(x) \quad \frac{d}{d x}(c \cdot f(x))=c \cdot \frac{d}{d x} f(x)
$$

where c is a constant.

Building the Toolbox

Theorem (Scalars)

If $y=f(x)$ is a differentiable function then,

$$
(c \cdot f(x))^{\prime}=c \cdot f^{\prime}(x) \quad \frac{d}{d x}(c \cdot f(x))=c \cdot \frac{d}{d x} f(x)
$$

where c is a constant.

Example

$$
\text { Since } \frac{d}{d x} x^{2}=2 x \text {, we have } \frac{d}{d x} 5 x^{2}=5 \cdot 2 x=10 x \text {. }
$$

Building the Toolbox

Theorem (Sums)

If f and g are differentiable functions, then

$$
\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)
$$

In words,
the derivative of a sum is the sum of the derivatives.

Building the Toolbox

Theorem (Sums)

If f and g are differentiable functions, then

$$
\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)
$$

In words,
the derivative of a sum is the sum of the derivatives.

$$
\frac{d}{d x}\left(3 x^{2}+2 x+7\right)=
$$

Building the Toolbox

Theorem (Sums)

If f and g are differentiable functions, then

$$
\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)
$$

In words,
the derivative of a sum is the sum of the derivatives.

$$
\begin{aligned}
\frac{d}{d x}\left(3 x^{2}+2 x+7\right) & =\frac{d}{d x}\left(3 x^{2}\right)+\frac{d}{d x}(2 x)+\frac{d}{d x}(7) \\
& =3 \cdot 2 x+2 \cdot 1+0=6 x+2
\end{aligned}
$$

Calculate $\frac{d}{d x}((5 x+3)(x+2))$.

Caution! The answer is not 5. Expand first!

$$
\text { Calculate } \frac{d}{d x}((5 x+3)(x+2))
$$

Caution! The answer is not 5. Expand first!

$$
\begin{aligned}
\frac{d}{d x}((5 x+3)(x+2)) & =\frac{d}{d x}\left(5 x^{2}+13 x+6\right) \\
& =5 \cdot 2 x+13 \\
& =10 x+13
\end{aligned}
$$

Building the Toolbox

Theorem (Products)

If $f(x)$ and $g(x)$ are differentiable functions, then

$$
\frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x)
$$

In words, the derivative of a product is
the first times the derivative of the second, plus the second times the derivative of the first.

Building the Toolbox

Theorem (Products)

If $f(x)$ and $g(x)$ are differentiable functions, then

$$
\frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x)
$$

In words, the derivative of a product is the first times the derivative of the second, plus the second times the derivative of the first.

Try 2: Calculate $\frac{d}{d x}((5 x+3)(x+2))$:

$$
\begin{gathered}
\frac{d}{d x}((5 x+3)(x+2))=(5 x+3) \cdot 1+(x+2) \cdot 5=10 x+13 \\
f^{\uparrow} g^{\uparrow} \quad f \cdot g^{\prime}+g \cdot f^{\prime}
\end{gathered}
$$

Building the Toolbox

Theorem (Reciprocals)

If $y=f(x)$ is a differentiable function, then wherever $f(x) \neq 0$,

$$
\frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f(x)^{2}}
$$

Building the Toolbox

Theorem (Reciprocals)

If $y=f(x)$ is a differentiable function, then wherever $f(x) \neq 0$,

$$
\frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f(x)^{2}}
$$

Example:

$$
\text { Calculate } \frac{d}{d x}\left(\frac{1}{x^{2}}\right) .
$$

Building the Toolbox

Theorem (Reciprocals)

If $y=f(x)$ is a differentiable function, then wherever $f(x) \neq 0$,

$$
\frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f(x)^{2}}
$$

Example:

$$
\text { Calculate } \frac{d}{d x}\left(\frac{1}{x^{2}}\right) \text {. }
$$

Here, $f(x)=x^{2}$, so

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{1}{x^{2}}\right)=-\frac{2 x}{\left(x^{2}\right)^{2}}=-\frac{2}{x^{3}}=-2 x^{-3} \tag{e}
\end{equation*}
$$

Some more examples of reciprocals

$$
\text { Rule: } \frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f(x)^{2}}
$$

Some more examples of reciprocals

$$
\begin{gathered}
\text { Rule: } \frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f(x)^{2}} \\
\frac{d}{d x}\left(\frac{1}{x^{2}+3 x+1}\right)=-\frac{2 x+3}{\left(x^{2}+3 x+1\right)^{2}}
\end{gathered}
$$

Some more examples of reciprocals

$$
\begin{gathered}
\text { Rule: } \frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f(x)^{2}} \\
\frac{d}{d x}\left(\frac{1}{x^{2}+3 x+1}\right)=-\frac{2 x+3}{\left(x^{2}+3 x+1\right)^{2}}
\end{gathered}
$$

Quotients:

$$
\frac{d}{d x}\left(\frac{x^{2}-1}{x^{2}+3 x+1}\right)=\frac{d}{d x}\left(\left(x^{2}-1\right)\left(\frac{1}{x^{2}+3 x+1}\right)\right)
$$

Some more examples of reciprocals

Rule: $\frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f(x)^{2}}$.

$$
\frac{d}{d x}\left(\frac{1}{x^{2}+3 x+1}\right)=-\frac{2 x+3}{\left(x^{2}+3 x+1\right)^{2}}
$$

Quotients:

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{x^{2}-1}{x^{2}+3 x+1}\right)=\frac{d}{d x}\left(\left(x^{2}-1\right)\left(\frac{1}{x^{2}+3 x+1}\right)\right) \\
& =\left(x^{2}-1\right) \frac{-(2 x+3)}{\left(x^{2}+3 x+1\right)^{2}}+\frac{1}{x^{2}+3 x+1}(2 x)
\end{aligned}
$$

In general,

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f}{g}\right) & =\frac{d}{d x}\left(\left(\frac{1}{g}\right) \cdot f\right) \\
& =
\end{aligned}
$$

In general,

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f}{g}\right) & =\frac{d}{d x}\left(\left(\frac{1}{g}\right) \cdot f\right) \\
& =\left(\frac{1}{g}\right) \cdot \frac{d}{d x}(f)+f \cdot \frac{d}{d x}\left(\frac{1}{g}\right)
\end{aligned}
$$

[^0]In general,

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f}{g}\right) & =\frac{d}{d x}\left(\left(\frac{1}{g}\right) \cdot f\right) \\
& =\left(\frac{1}{g}\right) \cdot \frac{d}{d x}(f)+f \cdot \frac{d}{d x}\left(\frac{1}{g}\right) \\
& =\frac{f^{\prime}}{g}+f\left(-\frac{g^{\prime}}{g^{2}}\right)
\end{aligned}
$$

(product rule)

(reciprocal rule)

In general,

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f}{g}\right) & =\frac{d}{d x}\left(\left(\frac{1}{g}\right) \cdot f\right) \\
& =\left(\frac{1}{g}\right) \cdot \frac{d}{d x}(f)+f \cdot \frac{d}{d x}\left(\frac{1}{g}\right) \\
& =\frac{f^{\prime}}{g}+f\left(-\frac{g^{\prime}}{g^{2}}\right) \\
& =\frac{f^{\prime}}{g}-\frac{f \cdot g^{\prime}}{g^{2}}
\end{aligned}
$$

(product rule)

(reciprocal rule)

In general,

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f}{g}\right) & =\frac{d}{d x}\left(\left(\frac{1}{g}\right) \cdot f\right) \\
& =\left(\frac{1}{g}\right) \cdot \frac{d}{d x}(f)+f \cdot \frac{d}{d x}\left(\frac{1}{g}\right) \\
& =\frac{f^{\prime}}{g}+f\left(-\frac{g^{\prime}}{g^{2}}\right) \\
& =\frac{f^{\prime}}{g}-\frac{f \cdot g^{\prime}}{g^{2}} \\
& =\frac{g \cdot f^{\prime}-f \cdot g^{\prime}}{g^{2}}
\end{aligned}
$$

(product rule)

(reciprocal rule)
(common denominator)

In general,

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f}{g}\right) & =\frac{d}{d x}\left(\left(\frac{1}{g}\right) \cdot f\right) \\
& =\left(\frac{1}{g}\right) \cdot \frac{d}{d x}(f)+f \cdot \frac{d}{d x}\left(\frac{1}{g}\right) \\
& =\frac{f^{\prime}}{g}+f\left(-\frac{g^{\prime}}{g^{2}}\right) \\
& =\frac{f^{\prime}}{g}-\frac{f \cdot g^{\prime}}{g^{2}} \\
& =\frac{g \cdot f^{\prime}-f \cdot g^{\prime}}{g^{2}}
\end{aligned}
$$

(product rule)
(reciprocal rule)
(common denominator)

Theorem (Quotient rule)

Wherever $g(x) \neq 0$,

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g^{\prime}(x)}{g(x)^{2}}
$$

Building the Toolbox

Theorem

Let $(f \circ g)(x)=f(g(x))$.
Assume that g is differentiable at the point x and that f is differentiable at the point $g(x)$. Then the composite function $f \circ g$ is differentiable at the point x, and

$$
\frac{d}{d x}((f \circ g)(x))=\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) .
$$

Using Leibniz's notation:

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

Chain rule: $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Example
Calculate $\frac{d}{d x}\left(\sqrt{x^{7}+5}\right)$.

Chain rule: $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Example
Calculate $\frac{d}{d x}\left(\sqrt{x^{7}+5}\right)$.
Here,

$$
f(x)=\sqrt{x}=x^{1 / 2} \quad \text { and } \quad g(x)=x^{7}+5 .
$$

Chain rule: $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Example
Calculate $\frac{d}{d x}\left(\sqrt{x^{7}+5}\right)$.
Here,

$$
f(x)=\sqrt{x}=x^{1 / 2} \quad \text { and } \quad g(x)=x^{7}+5 .
$$

So

$$
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \quad \text { and } \quad g^{\prime}(x)=7 x^{6}
$$

Chain rule: $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Example
Calculate $\frac{d}{d x}\left(\sqrt{x^{7}+5}\right)$.
Here,

$$
f(x)=\sqrt{x}=x^{1 / 2} \quad \text { and } \quad g(x)=x^{7}+5 .
$$

So

$$
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \quad \text { and } \quad g^{\prime}(x)=7 x^{6}
$$

and so

$$
\frac{d}{d x}\left(\sqrt{x^{7}+5}\right)=\frac{1}{2 \sqrt{x^{7}+5}} \cdot 7 x^{6}
$$

Back to reciprocals:

$$
\text { Chain rule: } \frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) \text {. }
$$

Calculate $\frac{d}{d x}\left(\frac{1}{g(x)}\right)=\frac{d}{d x}\left((g(x))^{-1}\right)$

Back to reciprocals:

$$
\text { Chain rule: } \frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) \text {. }
$$

$$
\text { Calculate } \frac{d}{d x}\left(\frac{1}{g(x)}\right)=\frac{d}{d x}\left((g(x))^{-1}\right)
$$

Outside function: $f(x)=x^{-1}$ Inside function: $g(x)$

Back to reciprocals:

$$
\text { Chain rule: } \frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) \text {. }
$$

$$
\text { Calculate } \frac{d}{d x}\left(\frac{1}{g(x)}\right)=\frac{d}{d x}\left((g(x))^{-1}\right)
$$

Outside function: $f(x)=x^{-1}$ Inside function: $g(x)$

So since

$$
\frac{d}{d x}\left(x^{-1}\right)=-x^{-2}=-\frac{1}{x^{2}} \quad \text { and } \quad \frac{d}{d x}(g(x))=g^{\prime}(x)
$$

Back to reciprocals:

$$
\text { Chain rule: } \frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) \text {. }
$$

$$
\text { Calculate } \frac{d}{d x}\left(\frac{1}{g(x)}\right)=\frac{d}{d x}\left((g(x))^{-1}\right)
$$

Outside function: $f(x)=x^{-1}$
Inside function: $g(x)$
So since

$$
\frac{d}{d x}\left(x^{-1}\right)=-x^{-2}=-\frac{1}{x^{2}} \quad \text { and } \quad \frac{d}{d x}(g(x))=g^{\prime}(x)
$$

we get

$$
\frac{d}{d x}\left(\frac{1}{g(x)}\right)=-\frac{1}{(g(x))^{2}} \cdot g^{\prime}(x)=-\frac{g^{\prime}(x)}{(g(x))^{2}}
$$

just like before!

[^0]: (product rule)

