Differentiation Rules

Oct 102011

Differentiability versus Continuity

Theorem
If $f^{\prime}(a)$ exists, then f is continuous at a.

A function whose derivative exists at every point of an interval is continuous and smooth,
i.e. it has no sharp corners.
ex of cont but not diff'ble :

$$
\begin{aligned}
& \text { * } \lim _{h \rightarrow 0}^{\frac{1}{x_{1}}} \frac{f(x+h)-f(x)}{h} D N E \\
& h \rightarrow 0^{-}: m_{1} \\
& h \rightarrow 0^{+}: m_{2}
\end{aligned}
$$

* $\lim _{x \rightarrow x_{1}} f(x)$ exists.

Building the Toolbox

Theorem (Scalars)

If $y=f(x)$ is a differentiable function then,

$$
(c \cdot f(x))^{\prime}=c \cdot f^{\prime}(x) \quad \frac{d}{d x}(c \cdot f(x))=c \cdot \frac{d}{d x} f(x)
$$

where c is a constant.
pf

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \frac{d}{d x} c f(x) \\
& =\lim _{h \rightarrow 0} \frac{(c f(x+h)}{\text { ex: } \frac{d}{d x}} \text { what is } \\
& =\lim _{h \rightarrow 0} \frac{c(f(x+h)-f(x))}{h} \\
& =d \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =d f^{\prime}(x) .
\end{aligned}
$$

Building the Toolbox

Theorem (Scalars)

If $y=f(x)$ is a differentiable function then,

$$
(c \cdot f(x))^{\prime}=c \cdot f^{\prime}(x) \quad \frac{d}{d x}(c \cdot f(x))=c \cdot \frac{d}{d x} f(x)
$$

where c is a constant.

Example

$$
\text { Since } \frac{d}{d x} x^{2}=2 x \text {, we have } \frac{d}{d x} 5 x^{2}=5 \cdot 2 x=10 x \text {. }
$$

Building the Toolbox

Theorem (Sums)

If f and g are differentiable functions, then

$$
\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)
$$

In words,
the derivative of a sum is the sum of the derivatives.

$$
\begin{aligned}
& \frac{d}{d x}(f(x)+g(x))= \\
& \lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-(f(x)+g(x))}{h} \\
& \vdots \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) \cdot f(x)}{h} \\
& \quad+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}
\end{aligned}
$$

Building the Toolbox

Theorem (Sums)

If f and g are differentiable functions, then

$$
\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)
$$

In words,
the derivative of a sum is the sum of the derivatives.

$$
\frac{d}{d x}\left(3 x^{2}+2 x+7\right)=
$$

Building the Toolbox

Theorem (Sums)

If f and g are differentiable functions, then

$$
\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)
$$

In words,
the derivative of a sum is the sum of the derivatives.

$$
\begin{aligned}
\frac{d}{d x}\left(3 x^{2}+2 x+7\right) & =\frac{d}{d x}\left(3 x^{2}\right)+\frac{d}{d x}(2 x)+\frac{d}{d x}(7) \\
& =3 \cdot 2 x+2 \cdot 1+0=6 x+2
\end{aligned}
$$

Calculate $\frac{d}{d x}((5 x+3)(x+2))$.

Caution! The answer is not 5. Expand first!

$$
\text { Calculate } \frac{d}{d x}((5 x+3)(x+2))
$$

Caution! The answer is not 5. Expand first!

$$
\begin{aligned}
\frac{d}{d x}((5 x+3)(x+2)) & =\frac{d}{d x}\left(5 x^{2}+13 x+6\right) \\
& =5 \cdot 2 x+13 \\
& =10 x+13
\end{aligned}
$$

Building the Toolbox

Theorem (Products)

If $f(x)$ and $g(x)$ are differentiable functions, then

$$
\frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x)
$$

In words, the derivative of a product is
the first times the derivative of the second, plus the second times the derivative of the first.

Building the Toolbox

Theorem (Products)

If $f(x)$ and $g(x)$ are differentiable functions, then

$$
\frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x) .
$$

In words, the derivative of a product is the first times the derivative of the second, plus the second times the derivative of the first.

Try 2: Calculate $\frac{d}{d x}((5 x+3)(x+2))$:

$$
\begin{gathered}
\frac{d}{d x}((5 x+3)(x+2))=(5 x+3) \cdot 1+(x+2) \cdot 5=10 x+13 \\
f^{\uparrow} g^{\uparrow} \quad f \cdot g^{\prime}+g \cdot f^{\prime}
\end{gathered}
$$

product of 3 fin :

$$
\begin{aligned}
& \underbrace{(\underbrace{5 x+3)}_{f} \overbrace{(x+2)}^{f})}_{f} \overbrace{(\underbrace{2 x-1)}_{g}}^{\text {of }} \rightarrow \begin{array}{c}
\text { same } \\
\text { answer. }
\end{array} \\
& \frac{d}{d x}(5 x+3)(x+2)(2 x-1) \\
& =(5 x+3)(x+2) \cdot\left(\frac{d}{d x}(2 x-1)\right) \\
& +(2 x-1) \cdot \underbrace{\left(\frac{d}{d x}(5 x+3)(x+2)\right.}_{\text {another product rule }}) \\
& =(5 x+3)(x+2) \cdot 2 \\
& +(2 x-1)[10 x+13]
\end{aligned}
$$

Building the Toolbox

Theorem (Reciprocals)

If $y=f(x)$ is a differentiable function, then wherever $f(x) \neq 0$,

$$
\frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f(x)^{2}}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{f(x)-f(x+h)}{f(x+h) f(x)}\right) \\
& =\lim _{h \rightarrow 0} \int_{h}^{-\frac{(f(x+h)-f(x))}{h}} \cdot \underbrace{\frac{1}{f(x+h) f(x)}}_{d} \\
& =(-1) \cdot \underbrace{\prime}_{d}(x) \\
& \frac{1 / f^{2}(x)}{d x} x^{-2}=-2 x^{-3}
\end{aligned}
$$

Building the Toolbox

Theorem (Reciprocals)

If $y=f(x)$ is a differentiable function, then wherever $f(x) \neq 0$,

$$
\frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f(x)^{2}}
$$

Example:
Calculate $\frac{d}{d x}\left(\frac{1}{x^{2}}\right)$.

Building the Toolbox

Theorem (Reciprocals)

If $y=f(x)$ is a differentiable function, then wherever $f(x) \neq 0$,

$$
\frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f(x)^{2}}
$$

Example:

$$
\text { Calculate } \frac{d}{d x}\left(\frac{1}{x^{2}}\right) \text {. }
$$

Here, $f(x)=x^{2}$, so

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{1}{x^{2}}\right)=-\frac{2 x}{\left(x^{2}\right)^{2}}=-\frac{2}{x^{3}}=-2 x^{-3} \tag{e}
\end{equation*}
$$

Some more examples of reciprocals

$$
\text { Rule: } \frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f(x)^{2}}
$$

Some more examples of reciprocals

$$
\begin{gathered}
\text { Rule: } \frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f(x)^{2}} \\
\frac{d}{d x}\left(\frac{1}{x^{2}+3 x+1}\right)=-\frac{2 x+3}{\left(x^{2}+3 x+1\right)^{2}}
\end{gathered}
$$

Some more examples of reciprocals

$$
\begin{gathered}
\text { Rule: } \frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f(x)^{2}} \\
\frac{d}{d x}\left(\frac{1}{x^{2}+3 x+1}\right)=-\frac{2 x+3}{\left(x^{2}+3 x+1\right)^{2}}
\end{gathered}
$$

Quotients:

$$
\frac{d}{d x}\left(\frac{x^{2}-1}{x^{2}+3 x+1}\right)=\frac{d}{d x}\left(\left(x^{2}-1\right)\left(\frac{1}{x^{2}+3 x+1}\right)\right)
$$

Some more examples of reciprocals

$$
\begin{gathered}
\text { Rule: } \frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f(x)^{2}} \\
\frac{d}{d x}\left(\frac{1}{x^{2}+3 x+1}\right)=-\frac{2 x+3}{\left(x^{2}+3 x+1\right)^{2}}
\end{gathered}
$$

Quotients:

$$
\begin{array}{r}
\frac{d}{d x}\left(\frac{x^{2}-1}{x^{2}+3 x+1}\right)=\frac{d}{d x}\left(\left(x^{2}-1\right)\left(\frac{1}{x^{2}+3 x+1}\right)\right) \\
=\left(x^{2}-1\right) \frac{-(2 x+3)}{\left(x^{2}+3 x+1\right)^{2}}+\frac{1}{x^{2}+3 x+1}(2 x)
\end{array}
$$

In general,

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f}{g}\right) & =\frac{d}{d x}\left(\left(\frac{1}{g}\right) \cdot f\right) \\
& =
\end{aligned}
$$

In general,

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f}{g}\right) & =\frac{d}{d x}\left(\left(\frac{1}{g}\right) \cdot f\right) \\
& =\left(\frac{1}{g}\right) \cdot \frac{d}{d x}(f)+f \cdot \frac{d}{d x}\left(\frac{1}{g}\right)
\end{aligned}
$$

[^0]In general,

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f}{g}\right) & =\frac{d}{d x}\left(\left(\frac{1}{g}\right) \cdot f\right) \\
& =\left(\frac{1}{g}\right) \cdot \frac{d}{d x}(f)+f \cdot \frac{d}{d x}\left(\frac{1}{g}\right) \\
& =\frac{f^{\prime}}{g}+f\left(-\frac{g^{\prime}}{g^{2}}\right)
\end{aligned}
$$

(product rule)

(reciprocal rule)

In general,

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f}{g}\right) & =\frac{d}{d x}\left(\left(\frac{1}{g}\right) \cdot f\right) \\
& =\left(\frac{1}{g}\right) \cdot \frac{d}{d x}(f)+f \cdot \frac{d}{d x}\left(\frac{1}{g}\right) \\
& =\frac{f^{\prime}}{g}+f\left(-\frac{g^{\prime}}{g^{2}}\right) \\
& =\frac{f^{\prime}}{g}-\frac{f \cdot g^{\prime}}{g^{2}}
\end{aligned}
$$

(product rule)

(reciprocal rule)

In general,

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f}{g}\right) & =\frac{d}{d x}\left(\left(\frac{1}{g}\right) \cdot f\right) \\
& =\left(\frac{1}{g}\right) \cdot \frac{d}{d x}(f)+f \cdot \frac{d}{d x}\left(\frac{1}{g}\right) \\
& =\frac{f^{\prime}}{g}+f\left(-\frac{g^{\prime}}{g^{2}}\right) \\
& =\frac{f^{\prime}}{g}-\frac{f \cdot g^{\prime}}{g^{2}} \\
& =\frac{g \cdot f^{\prime}-f \cdot g^{\prime}}{g^{2}}
\end{aligned}
$$

(product rule)

(reciprocal rule)
(common denominator)

In general,

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f}{g}\right) & =\frac{d}{d x}\left(\left(\frac{1}{g}\right) \cdot f\right) \\
& =\left(\frac{1}{g}\right) \cdot \frac{d}{d x}(f)+f \cdot \frac{d}{d x}\left(\frac{1}{g}\right) \\
& =\frac{f^{\prime}}{g}+f\left(-\frac{g^{\prime}}{g^{2}}\right) \\
& =\frac{f^{\prime}}{g}-\frac{f \cdot g^{\prime}}{g^{2}} \\
& =\frac{g \cdot f^{\prime}-f \cdot g^{\prime}}{g^{2}}
\end{aligned}
$$

(common denominator)

Theorem (Quotient rule)

Wherever $g(x) \neq 0$,

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g^{\prime}(x)}{g(x)^{2}}
$$

Building the Toolbox

Theorem

Let $(f \circ g)(x)=f(g(x))$.
Assume that g is differentiable at the point x and that f is differentiable at the point $g(x)$. Then the composite function $f \circ g$ is differentiable at the point x, and

$$
\frac{d}{d x}((f \circ g)(x))=\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) .
$$

Using Leibniz's notation:

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

Chain rule: $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Example
Calculate $\frac{d}{d x}\left(\sqrt{x^{7}+5}\right)$.

Chain rule: $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Example
Calculate $\frac{d}{d x}\left(\sqrt{x^{7}+5}\right)$.
Here,

$$
f(x)=\sqrt{x}=x^{1 / 2} \quad \text { and } \quad g(x)=x^{7}+5 .
$$

Chain rule: $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Example
Calculate $\frac{d}{d x}\left(\sqrt{x^{7}+5}\right)$.
Here,

$$
f(x)=\sqrt{x}=x^{1 / 2} \quad \text { and } \quad g(x)=x^{7}+5 .
$$

So

$$
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \quad \text { and } \quad g^{\prime}(x)=7 x^{6}
$$

Chain rule: $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Example
Calculate $\frac{d}{d x}\left(\sqrt{x^{7}+5}\right)$.
Here,

$$
f(x)=\sqrt{x}=x^{1 / 2} \quad \text { and } \quad g(x)=x^{7}+5 .
$$

So

$$
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \quad \text { and } \quad g^{\prime}(x)=7 x^{6}
$$

and so

$$
\frac{d}{d x}\left(\sqrt{x^{7}+5}\right)=\frac{1}{2 \sqrt{x^{7}+5}} \cdot 7 x^{6}
$$

Back to reciprocals:

$$
\text { Chain rule: } \frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) \text {. }
$$

Calculate $\frac{d}{d x}\left(\frac{1}{g(x)}\right)=\frac{d}{d x}\left((g(x))^{-1}\right)$

Back to reciprocals:

$$
\text { Chain rule: } \frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) \text {. }
$$

$$
\text { Calculate } \frac{d}{d x}\left(\frac{1}{g(x)}\right)=\frac{d}{d x}\left((g(x))^{-1}\right)
$$

Outside function: $f(x)=x^{-1}$ Inside function: $g(x)$

Back to reciprocals:

$$
\text { Chain rule: } \frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) \text {. }
$$

$$
\text { Calculate } \frac{d}{d x}\left(\frac{1}{g(x)}\right)=\frac{d}{d x}\left((g(x))^{-1}\right)
$$

Outside function: $f(x)=x^{-1}$ Inside function: $g(x)$

So since

$$
\frac{d}{d x}\left(x^{-1}\right)=-x^{-2}=-\frac{1}{x^{2}} \quad \text { and } \quad \frac{d}{d x}(g(x))=g^{\prime}(x)
$$

Back to reciprocals:

$$
\text { Chain rule: } \frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) \text {. }
$$

$$
\text { Calculate } \frac{d}{d x}\left(\frac{1}{g(x)}\right)=\frac{d}{d x}\left((g(x))^{-1}\right)
$$

Outside function: $f(x)=x^{-1}$
Inside function: $g(x)$
So since

$$
\frac{d}{d x}\left(x^{-1}\right)=-x^{-2}=-\frac{1}{x^{2}} \quad \text { and } \quad \frac{d}{d x}(g(x))=g^{\prime}(x)
$$

we get

$$
\frac{d}{d x}\left(\frac{1}{g(x)}\right)=-\frac{1}{(g(x))^{2}} \cdot g^{\prime}(x)=-\frac{g^{\prime}(x)}{(g(x))^{2}}
$$

just like before!

Calculate $\frac{d}{d x}$ of ...
(1) $\left(3 x^{2}+x+1\right)(5 x+1)$

Two ways:
(a) Expand first.

$$
\begin{array}{r}
\left(3 x^{2}+x+1\right)(5 x+1)=15 x^{3}+8 x^{2}+6 x+1 \\
\left\{\frac{d}{d x}\right. \\
45 x^{2}+16 x+6
\end{array}
$$

(b) product rule:

$$
\begin{aligned}
& \frac{d}{d x}\left(3 x^{2}+x+1\right)(5 x+1) \\
& \quad=\left(3 x^{2}+x+1\right) \cdot 5+(5 x+1)(6 x+1)
\end{aligned}
$$

t "done" here.
but to compare to (a) ...

$$
\begin{aligned}
& =15 x^{2}+5 x+5+30 x^{2}+11 x+1 \\
& =45 x^{2}+16 x+6 \quad \ddot{ }
\end{aligned}
$$

(2) $\quad 4=\left(3 x^{2}+x+1\right)(5 x+1)^{2}$

Lots of ways, including:
(a) Expand all the way:

$$
\left(3 x^{2}+x+1\right)(5 x+1)^{2}=75 x^{4}+55 x^{3}+38 x^{2}+11 x+1
$$

so

$$
\begin{aligned}
\frac{d y}{d x} & =4.75 x^{3}+3.55 x^{2}+2.38 x+11 \\
& =300 x^{3}+165 x^{2}+76 x+11
\end{aligned}
$$

(b) Expand the $(5 x+1)^{2}$:

$$
\begin{gathered}
\left(3 x^{2}+x+1\right)(5 x+1)^{2}=\left(3 x^{2}+x+1\right)\left(25 x^{2}+10 x+1\right) \\
\left\{\frac{d}{d x}\right.
\end{gathered}
$$

product rule:

$$
\begin{aligned}
&\left(3 x^{2}+x+1\right)(50 x+10)+\left(25 x^{2}+10 x+1\right)(6 x+1) \\
& \text { 世"done" } \\
&= 150 x^{3}+80 x^{2}+60 x+10 \\
&+150 x^{3}+85 x^{2}+16 x+1 \\
&= 300 x^{3}+165 x^{2}+76 x+1 \text { ル }
\end{aligned}
$$

(c) two product rules:

$$
\begin{aligned}
\frac{d}{d x}(& \left.\left(3 x^{2}+x+1\right)(5 x+1)\right)(5 x+1) \\
& =\underbrace{\left(3 x^{2}+x+1\right)(5 x+1) \cdot 5}+(5 x+1) \cdot \underbrace{\frac{d}{d x}\left(3 x^{2}+x+1\right)(5 x+1)} \\
& =75 x^{3}+40 x^{2}+30 x+5+(5 x+1)\left[\left(3 x^{2}+x+1\right) \cdot 5+(5 x+1)(6 x+1)\right] \\
& =\cdots=300 x^{3}+165 x^{2}+76 x+1
\end{aligned}
$$

(d) My favorite:
product and chain sue:

$$
\begin{aligned}
& \frac{d}{d x}\left(3 x^{2}+x+1\right)(5 x+1)^{2} \\
&=\left(3 x^{2}+x+1\right) \cdot 2(5 x+1)^{1} \cdot 5 \\
&+(5 x+1)^{2} \cdot(6 x+1) \\
&= 150 x^{3}+80 x^{2}+60 x+10 \\
&+150 x^{3}+85 x^{2}+16 x+1 \\
&= 300 x^{3}+165 x^{2}+76 x+11 \quad \text { U }
\end{aligned}
$$

(3) $y=(5 x+1)^{10}$

Lots of ways for example...
(a) Be obnoxious and expand first:

$$
\begin{array}{rl}
(5 x+1)^{10}=9,7 & 65,625 x^{10}+19,531,250 x^{9} \\
& +17,5781+25 x^{8}+9,375,000 x^{7} \\
& +3,281,250 x^{6}+787,500 x^{5} \\
& +131,250 x^{4}+15,000 x^{3}+1125 x^{2} \\
& +50 x+1
\end{array}
$$

so

$$
\begin{aligned}
& +140,625,000 x^{7}+65,625,000 x^{6} \\
& +19,687,500 x^{5}+3,937,500 x^{4} \\
& +525,000 x^{3}+45,000 x^{2}+2250 x+50
\end{aligned}
$$

(b) Chain rule:

$$
\frac{d}{d x}(5 x+1)^{10}=10(5 x+1)^{9} * 5
$$

(which happens to be
if you expand)
(4) $\left(3 x^{2}+x+1\right)(5 x+1)^{10}$

Product, then chain:

$$
\begin{gathered}
\left(3 x^{2}+x+1\right) \cdot \frac{d}{d x}(5 x+1)^{10}+(5 x+1)^{10} \frac{d}{d x}\left(3 x^{2}+x+1\right) \\
=\left(3 x^{2}+x+1\right) \cdot 10(5 x+1)^{9} \cdot 5 \\
+(5 x+1)^{10}(6 x+1) .
\end{gathered}
$$

七 "done",
but notice there's a quick rout to factorization:
pull out $(5 x+1)^{9}$ that the two terms have in common:

$$
\begin{aligned}
y & =(5 x+1)^{9}\left(50\left(3 x^{2}+x+1\right)+(5 x+1)(6 x+1)\right) \\
& =(5 x+1)^{9}\left(150 x^{2}+50 x+50+30 x^{2}+11 x+1\right) \\
& =(5 x+1)^{9}(\underbrace{180 x^{2}+66 x+51}_{\text {no real roots! }})
\end{aligned}
$$

(5) $\frac{\sqrt{x^{2}-x}}{x+x^{-1}}$

Many ways, including...
(a) Quotient rule: $y=\frac{f}{g}$
where

$$
f=\left(x^{2}-x\right)^{1 / 2} \quad \therefore \quad g=x+x^{-1}
$$

so

$$
f^{\prime}=\frac{1}{2}\left(x^{2}-x\right)^{-1 / 2} \quad ; \quad g^{\prime}=1-x^{-2}
$$

so

$$
\frac{d y}{d x}=\frac{f^{\prime} g-g^{\prime} f}{g^{2}}=\frac{(2 x-1) *}{v} \frac{1}{2}\left(x^{2}-x\right)^{-1 / 2} \cdot\left(x+x^{-1}\right)-\left(1-x^{-2}\right)\left(x^{2}-x\right)^{1 / 2}
$$

C. "done"
(b) product rule: $f \cdot(g)^{-1}$
where

$$
f=\left(x^{2}-x\right)^{1 / 2} \quad: \quad g=x+x^{-1}
$$

$$
\begin{aligned}
& \frac{d}{d x} f \cdot(g)^{-1}= f \cdot \frac{d}{d x}(g)^{-1}+(g)^{-1} \frac{d}{d x} f \\
&=\left(x^{2}-x\right)^{1 / 2} \cdot\left(-\left(x+x^{-1}\right)^{-2} \cdot\left(1-x^{-2}\right)\right) \\
&+\left(x+x^{-1}\right)^{-1} \cdot \frac{1}{2}\left(x^{2}-x\right)^{-1 / 2} \leftarrow \text { "done" }^{\prime \prime} \\
&=-\frac{\left(x^{2}-x\right)^{1 / 2}\left(1-x^{2}\right)}{\left(x+x^{-1}\right)^{2}}+\frac{\left(x+x^{-1}\right) \cdot \frac{1}{2}\left(x^{2}-x\right)^{-1 / 2}}{\left(x+x^{-1}\right)^{2}} \leftarrow \text { same }
\end{aligned}
$$

(6) $\frac{1}{\sqrt[3]{x^{2}+7 x^{1 / 2}}}$

Many ways, including...
(a) reciprocal rule: $\frac{1}{f}$ where $f=\left(x^{2}+7 x^{1 / 2}\right)^{1 / 3}$
since $f^{\prime}=\frac{1}{3}\left(x^{2}+7 x^{1 / 2}\right)^{-2 / 3} \cdot\left(, 2 x+7 / 2 x^{-1 / 2}\right)$

$$
\begin{aligned}
\frac{d y}{d x} & =-\frac{\frac{1}{3}\left(x^{2}+7 x^{1 / 2}\right)^{-2 / 3}\left(2 x+\frac{7}{2} x^{-1 / 2}\right)}{\left(\sqrt[3]{x^{2}+7 x^{1 / 2}}\right)^{2}} \\
& =-\frac{2 x+\frac{7}{2} x^{-1 / 2}}{3\left(x^{2}+7 x^{1 / 2}\right)^{4 / 3}} \quad \text { \& nicer. }
\end{aligned}
$$

(b) Rewrite first, then chain role:

$$
y=\left(x^{2}+7 x^{1 / 2}\right)^{-1 / 3}
$$

so

$$
\begin{aligned}
\frac{d y}{d x} & =-\frac{1}{3}\left(x^{2}+7 x^{1 / 2}\right)^{-4 / 3}\left(2 x+\frac{7}{2} x^{-1 / 2}\right) \\
& =-\frac{2 x+7 / 2 x^{-1 / 2}}{3\left(x^{2}+7 x^{1 / 2}\right)^{4 / 3}},
\end{aligned}
$$

just as before!

[^0]: (product rule)

