Derivatives

Oct 7. 2011

Warm-up:
calculate as many

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

of the following as you can in the next few minutes:

$$
\begin{aligned}
f(x)= & x, \\
& x^{2}, x^{3}, \leftarrow \text { expand } \\
& \frac{1}{x}, \frac{1}{x^{2}}, \leftarrow \begin{array}{c}
\text { common } \\
\text { denominators }
\end{array} \\
& \sqrt{x} \leftarrow \text { molt by } \\
& \left(\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}\right) \\
& \sqrt[3]{x} \leqslant \text { mull by }(\text { top } \vdots \text { bot }) ; \\
& \left.(\sqrt[3]{x+h})^{2}+\sqrt[3]{x+h} \sqrt[3]{x}+(\sqrt[3]{x})^{2}\right) \\
= & (x+h)^{2 / 3}+(x+h)^{1 / 3} x^{1 / 3}+x^{2 / 3}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x \\
& \lim _{h \rightarrow 0} \frac{(x+h)-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=1 \\
& f(x)=x^{2} \\
& \lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
&=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& *=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=\lim _{h \rightarrow 0} 2 x+h \\
&=2 x
\end{aligned}
$$

$$
f(x)=x^{3}
$$

recall: $(x+h)^{3}=x^{3}+3 x^{2} h+3 x h^{2}+h^{3}$
so $(x+h)^{3}-x^{3}=3 x^{2} h+3 x h^{2}+h^{3}$.
So, if $h \neq 0$

* $\frac{(x+h)^{3}-x^{3}}{h}=3 x^{2}+3 x h+h^{2}$
so

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} & =\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{3}\right) \\
& =3 x^{2}+0+0
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{1}{x}=x^{-1} \\
& \lim _{h \rightarrow 0} \frac{\left(\frac{1}{x+h}-\frac{1}{x}\right)}{h}=\lim _{h \rightarrow 0}\left(\frac{1}{h}\right)\left(\frac{x-(x+h)}{(x+h)(x)}\right) \\
& \stackrel{(*)}{=} \lim _{h \rightarrow 0}\left(\frac{1}{h}\right)\left(\frac{-h}{(x+h) x}\right) \\
& =\lim _{h \rightarrow 0^{-}} \frac{1}{(x+h) x}=-\frac{1}{x^{2}}=-x^{-2} \\
& f(x)=\frac{1}{x^{2}}=x^{-2} \\
& \lim _{h \rightarrow 0} \frac{\left(\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}\right)}{h}=\lim _{h \rightarrow 0}\left(\frac{1}{h}\right)\left(\frac{x^{2}-(x+h)^{2}}{(x+h)^{2} x^{2}}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x^{2}-\left(x^{2}+2 x h+h^{2}\right)}{(x+h)^{2} x^{2}}\right) \\
& \text { * } \lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-2 x h+h^{2}}{(x+h)^{2} x^{2}}\right)=\lim _{h \rightarrow 0} \frac{-2 x+h}{(x+h)^{2} x^{2}} \\
& =-\frac{2 x}{x^{4}}=-\frac{2}{x^{3}}=-2 x^{-3}
\end{aligned}
$$

From last class:

$$
f(x)=\sqrt{x}
$$

So

$$
f(x+h)=\sqrt{x+h}
$$

so
can't ploy in $n=0$ yet

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h}=\frac{\sqrt{x+h}-\sqrt{x}}{h}>0 \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot\left(\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}\right) \\
& =\frac{(x+h)-x}{h(\sqrt{x+h}+\sqrt{x})}=\frac{h}{h(\sqrt{x+h}+\sqrt{x})}
\end{aligned}
$$

so

$$
\begin{array}{r}
\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h}+\sqrt{x})} \\
\quad=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}=\frac{1}{2 x^{1 / 2}}
\end{array}
$$

$$
f(x)=\sqrt[3]{x}=x^{1 / 3}
$$

Since

$$
\begin{aligned}
& (a-b)\left(a^{2}+a b+b^{2}\right) \\
& =a^{3}+a^{2} b+a b^{2} \\
& -\left(a^{2} b+a b^{2}+b^{3}\right) \\
& =a^{3}-b^{3}, \quad \text { let } \quad a=\sqrt[3]{x+h} \\
& b=\sqrt[3]{x}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \left((x+h)^{1 / 3}-x^{1 / 3}\right)\left((x+h)^{2 / 3}+(x+h)^{1 / 3} x^{1 / 3}+x^{2 / 3}\right) \\
& =(x+h)^{3 / 3}-x^{3 / 3}=x+h-x=h
\end{aligned}
$$

so

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{(x+h)^{1 / 3}-x^{1 / 3}}{h} \cdot \frac{\left((x+h)^{2 / 3}+(x+h)^{1 / 3} x^{1 / 3}+x^{2 / 3}\right)}{\left((x+h)^{2 / 3}+(x+h)^{1 / 3} x^{1 / 3}+x^{2 / 3}\right)} \\
& =\lim _{h \rightarrow 0} \frac{h}{h^{7}\left((x+h)^{2 / 3}+(x+h)^{1 / 3} x^{1 / 3}+x^{2 / 3}\right)} \\
& =\frac{1}{x^{2 / 3}+x^{1 / 3} x^{1 / 3}+x^{2 / 3}}=\frac{1}{3 x^{2 / 3}}=\frac{1}{3} x^{-2 / 3}
\end{aligned}
$$

$f(x)$	$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$x^{0}=1$	0
$x^{1}=x$	1
x^{2}	$2 x$
x^{3}	$3 x^{2}$
$x^{-1}=\frac{1}{x}$	$-x^{-2}$
x^{-2}	$-2 x^{-3}$
$x^{1 / 2}$	$+\frac{1}{2} x^{-1 / 2}$
$x^{1 / 3}$	$\frac{1}{3} x^{-2 / 3}$

Definition

The derivative of a function f is a new function defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

We will say that a function f is differentiable at a point $x=a$ if the derivative function f^{\prime} exists at a.

Suppose we consider the piecewise defined function

$$
f(x)= \begin{cases}x & x \leq 1 \\ 1 & 1<x<3 \\ -x+4 & 3 \leq x\end{cases}
$$

Suppose we consider the piecewise defined function

$$
f(x)= \begin{cases}x & x \leq 1 \\ 1 & 1<x<3 \\ -x+4 & 3 \leq x\end{cases}
$$

It's derivative is:

$$
f(x)= \begin{cases}1 & x<1 \\ 0 & 1<x<3 \\ -1 & 3<x\end{cases}
$$

More examples

If a and b are constants:

$$
f(x)=a
$$

$$
f^{\prime}(x)=0
$$

$$
f(x)=a x+b
$$

$$
f^{\prime}(x)=a
$$

Derivative "rule"

$$
\begin{array}{c|c}
f(x) & f^{\prime}(x) \\
\hline x^{0}=1 & 0 \\
x^{1}=x & 1 \\
x^{2} & 2 x \\
x^{3} & 3 x^{2} \\
x^{-1} & -x^{-2} \\
x^{-2} & -2 x^{-3} \\
x^{1 / 2} & (1 / 2) x^{-1 / 2} \\
x^{1 / 3} & (1 / 3) x^{-2 / 3}
\end{array}
$$

Derivative "rule"

$$
\begin{array}{c|c}
f(x) & f^{\prime}(x) \\
\hline x^{0}=1 & 0 \\
x^{1}=x & 1 \\
x^{2} & 2 x \\
x^{3} & 3 x^{2} \\
x^{-1} & -x^{-2} \\
x^{-2} & -2 x^{-3} \\
x^{1 / 2} & (1 / 2) x^{-1 / 2} \\
x^{1 / 3} & (1 / 3) x^{-2 / 3}
\end{array}
$$

If $f(x)=x^{a} \quad$ then $f^{\prime}(x)=a x^{a-1}$

Find an equation of the tangent line to the graph of $f(x)=x^{4 / 3}$ at the point where $x=1$.

$$
y=f(1)+f^{\prime}(1)(x-1)
$$

$$
\begin{aligned}
& f(x)=x^{4 / 3} \rightarrow f(a)=1 \\
& f^{\prime}(x)=\frac{4}{3} x^{\frac{1}{3}} \\
& a=1 \\
& \text { so } f^{\prime}(a)=\frac{4}{3}
\end{aligned}
$$

so

$$
\begin{aligned}
y-1 & =\frac{4}{3}(x-1) \\
y & =\frac{1}{\uparrow}+\frac{4}{3}(x-1) \\
& f(1) \quad f^{\prime}(1) \\
& =\frac{4}{3} x-\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{4 / 3} \\
& a=2 \\
& f(a)=2^{4 / 3}=2.52 \\
& y-2.52=m(x-2) \\
& m=f^{\prime}(2)=\frac{4}{3}(2)^{1 / 3}=1.68
\end{aligned}
$$

aprox:

$$
4-2.52=1.68(x-2)
$$

Find the derivative of $f(x)=|x|$.

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} \frac{|0+h|-0}{h} & =1 \\
\lim _{h \rightarrow 0^{-}} \frac{|0+h|-0}{h} & =-1
\end{aligned}
$$

Notation for the Derivative

$$
y^{\prime}=D_{x} y=\frac{d y}{d x}=\frac{d}{d x} f(x)=f^{\prime}(x) .
$$

Example

For the function $y=f(x)=1 / x$, find the slope of its tangent line at $x=2$. Compare it with the average rate of change over the interval [2,3].

Higher Order Derivatives

When we differentiate a function $f(x)$ we obtain a new function $f^{\prime}(x)$.
The derivative is again a candidate for differentiation, and we call its derivative the second derivative of $f(x)$.
So long as the derivatives exist we can continue this process to obtain a succession of higher derivatives.

Higher Order Derivatives ...

$$
y^{\prime \prime}=f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x} \frac{d}{d x} f(x)=\frac{d^{2}}{d x^{2}} f(x)=D_{x}^{2} y=D_{x}^{2} f(x) .
$$

The nth derivative, where n is a positive integer

$$
y^{(n)}=f^{(n)}(x)=\frac{d^{n} y}{d x^{n}}=\frac{d^{n}}{d x^{n}} f(x)=D_{x}^{n} y=D_{x}^{n} f(x) .
$$

