Calculate

Multiply by
$$\sqrt{x+h} + \sqrt{x}$$

$$\sqrt{x+h} + \sqrt{x}$$

$$f(x) = \sqrt{x}$$

$$f(x+h) = \sqrt{x+h}$$

$$f(x+h) - f(x) = \sqrt{x+h} - \sqrt{x}$$

$$f(x+h) - \sqrt{x} = \sqrt{x+h} - \sqrt{x}$$

$$= \sqrt{x+h} - \sqrt{x}$$

$$h(\sqrt{x+h} + \sqrt{x}) = h(\sqrt{x+h} + \sqrt{x})$$

$$= \sqrt{x}$$

$$h(\sqrt{x+h} + \sqrt{x}) = h(\sqrt{x+h} + \sqrt{x})$$

$$= \sqrt{x}$$

$$\lim_{h\to 0} \sqrt{x+h} - \sqrt{x} = \lim_{h\to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \lim_{h\to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

£(x) f(x) is not e P₂, P₄ Continuous f(x) is continuous "after Py"

Interior Point

An *interior point* of a <u>set</u> of real numbers is a point that can be enclosed in an open interval that is contained in the set.

Gno endpts. acx < b

sets we are interested in are domains of functions

From last example,

Set is "all real #D

except ×6° and ≤×7

Definition

- A function is continuous at an interior point c of its domain if $\lim_{x\to c} f(x) = f(c)$. Pu: no limit
- If it is not continuous there, i.e. if either the limit does not exist or is not equal to f(c) we will say that the function is discontinuous at c.

Note:

To be continuous when x=c:

- 1. The function f is defined at the point x=c,
- 2. The point x=c is an interior point of the domain of f,
- 3. $\lim_{x\to c} f(x)$ exists, call it L, and
- 4. L = f(c).

$$\int_{X\to c^{+}}^{\text{lim}} f(x) = L_{+}$$

$$\int_{X\to c^{-}}^{\text{lim}} f(x) = L_{-}$$
and
$$L_{-} = L_{+}$$

Is the function

$$f(x) = \begin{cases} x^2 & x < 1 \\ x^3 + 2 & 1 \le x \end{cases}$$

continuous at x = 1?

Checklist
Q1 /
Q2 /
Q3: No
No limit
C x= 1

not left continuous, but is right 5

Right Continuity and Left Continuity

- A function f is right continuous at a point c if it is defined on an interval [c,d] lying to the right of c and if $\lim_{x\to c^+} f(x) = f(c)$.
- Similarly it is left continuous at c if it is defined on an interval [d,c] lying to the left of c and if $\lim_{x\to c^-} f(x)=f(c)$.

From last page:

$$\lim_{x\to 1} f(x) = 1$$

but $f(1) = 3$
 $x\to 1$

So not L-cont.

Definition

A function f is continuous at a point x=c if c is in the domain of f and:

- 1. If x=c is an interior point of the domain of f, then $\lim_{x\to c} f(x)=f(c)$.
- 2. If x=c is not an interior point of the domain but is an endpoint of the domain, then f must be right or left continuous at x=c, as appropriate.

- A function f is said to be a continuous function if it is continuous at every point of its domain. (not just interior)
- ullet A point of discontinuity of a function f is a point in the domain of f at which the function is not continuous.

x=c is interior, and $\lim_{x \to c} f(x) = f(c)$ then f(x) is cont @ x=d if x=d is not interior, lim f(x) = f(d) then f(x) is cont @ x= d 3) if f(x) is cont Chen f(x) is continuous.

Facts

- All polynomials,
- Rational functions, → b/c jumps only happen @ domain gaps
- Trigonometric functions,
- The absolute value function, and
- The exponential and logarithm functions

are continuous.

- The rational function $f(x) = \frac{x^2-4}{x-2}$ is a continuous function.
- The domain is all real numbers except 2.

• $\lim_{x\to 2} f(x) = 4$ exists.

$$f(x) = \begin{cases} \text{ord} f(x) = 2 \\ x+2 \text{ else} \end{cases}$$

It has a continuous extension

continuous extension to domain and stay continuous.
$$F(x) = \begin{cases} f(x) & \text{if } x \text{ is in the domain of } f \\ 4 & \text{if } x = 2. \end{cases}$$

The function

$$f(x) = \begin{cases} \sin x & x \neq \pi/3 \\ 0 & x = \pi/3 \end{cases}$$

is discontinuous at $\pi/3$.

We can "remove" the discontinuity by redefining the value of f at $\pi/3$.

Definition

- If c is a discontinuity of a function f, and if $\lim_{x\to c} f(x) = L$ exists, then c is called a removable discontinuity. The discontinuity is removed by defining f(c) = L.
- If f is not defined at c but $\lim_{x\to c} f(x) = L$ exists, then f has a continuous extension to x = c by defining f(c) = L.

Suppose that f(x) is defined piecewise as

$$f(x) = \begin{cases} -x^2 + 1 & x < 2\\ x + k & x > 2 \end{cases}$$

Let us find a value of the constant k such that f has a continuous extension to x=2.

$$\lim_{x\to 2^{-}} f(x) = \lim_{x\to 2^{-}} -x^{2} + 1 = -3$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x + k = 2 + k$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}}$$

The Intermediate Value Theorem

all in & domain

If a function f is continuous on a closed interval [a,b], and if f(a) < L < f(b) (or f(a) > L > f(b)), then there exists a point c in the interval [a,b] such that f(c) = L.

Show that the equation $x^5-3x+1=0$ has a solution in the interval [0,1].

pols are continuous

every closed interval is in my domain

if
$$f(x) = x^5 - 3x + 1$$
 $f(0) = 1$, $f(1) = -1$

80 threis some pla blum 0 ? 1

for which $f(d) = 0$ b/c

-1<0<1.

Does the equation 1/x = 0 have a solution?

IVT does not apply. 16

The Tangent Line and Their Slope

• The Tangent Line Problem Given a function y = f(x) defined in an open interval and a point x_0 in the interval, define the tangent line at the point $(x_0, f(x_0))$ on the graph of f.

Definition

Given a function f and a point x_0 in its domain, the slope of the tangent line at the point $(x_0, f(x_0))$ on the graph of f is

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Given $f(x) = \sqrt{x}$, find the equation of the tangent line at x = 4.

$$y_{0} = \overline{14} = 2$$

$$y_{0} = \overline{14} = 4$$

$$y_{0} =$$