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Interior Point

An interior point of a set of real numbers is a point that can be

enclosed in an open interval that is contained in the set.
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Definition

e A function is continuous at an interior point ¢ of its domain if
limg .. f(z) = f(c). Py Mo Limik
» P, Not cbuo\\
e If it is not continuous there, i.e. if either the limit does not exist or

is not equal to f(c) we will say that the function is discontinuous
at c.



Note:
To \DQ CDhjﬁmuouJ; When K= & -

1. The function f is defined at the point x = ¢,

2. The point x = c is an interior point of the domain of f,

3. lim,_.. f(z)exists, call it L, and X—bd* g(x\ L
= f{e). \eg'
4. L= f(c) f;c-SchB—— L _
A\
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Example

Is the function

f(:z:):{$ < 1

»r+2 1<z

continuous at £ = 17
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Right Continuity and Left Continuity

e A function f is right continuous at a point c if it is defined on an
interval [c, d] lying to the right of ¢ and if lim,,_, .+ f(z) = f(c).

e Similarly it is left continuous at ¢ if it is defined on an interval
d, c] lying to the left of ¢ and if lim,_,.— f(z) = f(c).
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Definition

A function f is continuous at a point x = c if ¢ is in the domain

of f and:

1. If x = c is an interior point of the domain of f, then

limg—. f(z) = f(c).

2. If £ = cis not an interior point of the domain but is an endpoint
of the domain, then f must be right or left continuous at £ = ¢,
as appropriate.
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e A function f is said to be a continuous function if it is continuous

at every point of its domain. Cvxojr /6/0%.-\- ;f\-\cn‘m-—\

e A point of discontinuity of a function f is a point in the domain
of f at which the function is not continuous.
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Facts

e All polynomials,

e Rational functions,

e Trigonometric functions,

e [he absolute value function, and

e [he exponential and logarithm functions

are continuous.



e The rational function f(x) =
e [he domain is all real numbers except 2.

e lim, .o f(x) = 4 exists.

It has a continuous extension

|

Example
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Example

The function

_ Jsinz z#m7/3
flz) = {0 % =TS

is discontinuous at 7 /3.

‘We can “remove” the discontinuity by redefining the value of f at

/3.
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Definition

e If ¢ is a discontinuity of a function f, and if lim,_,. f(z) = L
exists, then cis called a removable discontinuity. The discontinuity
is removed by defining f(c) = L.

o If f is not defined at ¢ but lim,_.. f(z) = L exists, then f has
a continuous extension to z = ¢ by defining f(c) = L.
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Example

Suppose that f(z) is defined piecewise as

—x?+1 <2
E) =
f(@) {:U+k T > 2

Let us find a value of the constant k such that f has a continuous
extension to x = 2.
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The Intermediate Value Theorem

a‘\\_ A

{ W;'\

It a function f is continuous on a closed interval [a,b], and if
fla) < L < f(b) (or f(a) > L > f(b)), then there exists a point
c in the interval [a, b] such that f(c) = L.

a G 5
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Example

Show that the equation z° — 3z + 1 = 0 has a solution in the
interval [0, 1].

* PO ave tonBroeu A
X vy closed  tabwsl R i oy dowm,
F 0 Deye 0 3x 4
$=1,  J(4)Y=-1
Yo Tweea Some e bhon O T 4
Fom oMoty $@\No b
-4¢p ¢ 15



Example

Does the equation 1/x = 0 have a solution?
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The Tangent Line and Their Slope

e The Tangent Line Problem Given a function y = f(z) defined
In an open interval and a point xy in the interval, define the
tangent line at the point (zg, f(xg)) on the graph of f.
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Let f(z) = z2.

Example
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Definition

Given a function f and a point g in its domain, the slope of the
tangent line at the point (xg, f(zg)) on the graph of f is

i Fiza+hj— f(-’l?o)_
h—0 h
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Example

Given f(x) = +/z, find the equation of the tangent line at z = 4.
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