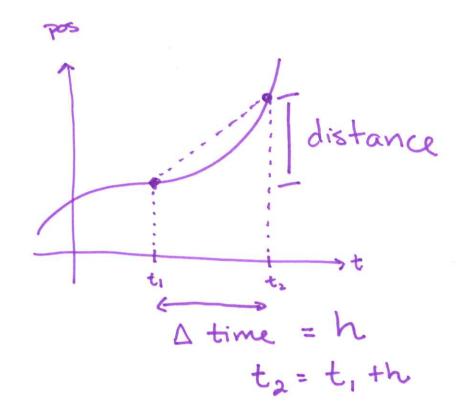
The average velocity during a time interval is the distance traveled divided by the elapsed time, i.e.

Average velocity over
$$[t_1, t_2] = \frac{\text{distance traveled}}{t_2 - t_1}$$
.



Definition

Let x(t) be a function that gives the position at time t of an object moving on the x-axis. Then

Ave
$$\operatorname{vel}[t_1,t_2] = \frac{x(t_2)-x(t_1)}{t_2-t_1}$$

$$\operatorname{Velocity}(t) = \lim_{h \to 0} \frac{x(t+h)-x(t)}{h}.$$

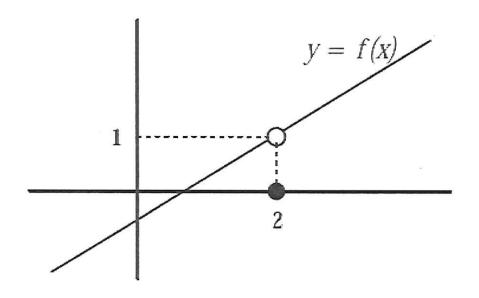
$$\operatorname{let} \text{ the time}$$

$$\operatorname{gap} \text{ yet small}$$

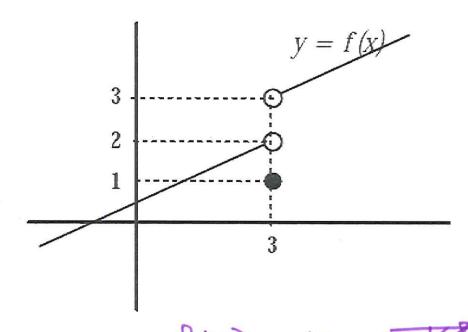
Limit of a Function – Definition

We say that a function f approaches the limit L as x approaches a, written $\lim_{x\to a} f(x) = L$, if we can make f(x) as close to L as we please by taking x sufficiently close to a.

Example



f(2) is ondefined.



lim f(x) is f(x) . 1 $x \rightarrow 3^-$ f(x) \rightarrow : the limit from the left is 2 $\lim_{x \rightarrow 3^+} f(x)$ \longrightarrow : $\lim_{x \rightarrow 3^+} f(x)$ \lim_{x **Theorem.** The limit of f as $x \to a$ exists if and only if both the right-hand and left-hand limits exist and have the same value. I.e.

$$\lim_{x\to a} f(x) = L \Leftrightarrow \lim_{x\to a^-} f(x) = L \text{ and } \lim_{x\to a^+} f(x) = L.$$

Examples

Compute the limits:

•
$$\lim_{x \to 2} \frac{x-2}{x+3} = \frac{2 - 2}{2 + 3} = \frac{0}{5} = 0$$

• $\lim_{x \to +1} \frac{x^2-1}{x-1} = \lim_{x \to 1} \frac{(x+1)(x+1)}{x-1} = \lim_{x \to 1} \frac{x+1}{x-1} = 2$
• $\lim_{x \to 0} \frac{1}{x}$ DNE
$$\lim_{x \to 0} \frac{1}{x}$$
 is another stry.

Theorem. If
$$\lim_{x\to a} f(x) = A$$
 and $\lim_{x\to a} g(x) = B$ both exist, then

1.
$$\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x) = A + B$$

2.
$$\lim_{x\to a} (f(x) - g(x)) = \lim_{x\to a} f(x) - \lim_{x\to a} g(x) = A - B$$

3.
$$\lim_{x\to a} (f(x)g(x)) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x) = A \cdot B$$

$$4. \lim_{x \to a} (f(x)/g(x)) = \lim_{x \to a} f(x)/\lim_{x \to a} g(x) = A/B \ (B \neq 0).$$

0). The except if
$$\lim_{x\to a} g(x) = 0$$

If $\lim_{x\to a} g(x) = 0$, lots can happen.

Examples

1.
$$\lim_{x\to 1} \frac{x^2-2x+3}{x^3+3x-1}$$

2.
$$\lim_{x\to 0} \frac{|x|}{x}$$
 DNE

3. Let
$$f(x) = 1/x$$
. Compute $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$

$$f(x) = \frac{1}{x}$$

$$f(x+h) = \frac{1}{x+h}$$

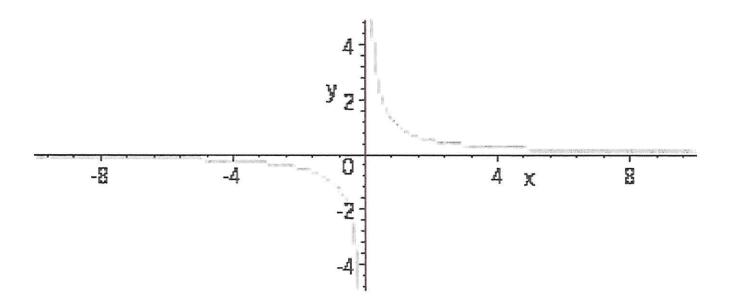
$$f(x+h) - f(x) = \frac{1}{x+h} - \frac{1}{x} = \left(\frac{x - (x+h)}{x(x+h)}\right) = \left(\frac{h}{x(x+h)}\right)$$

Limits at Infinity

 $\lim_{x\to\infty} f(x) = L$ means that the value of f(x) approaches L as the value of x approaches $+\infty$. This means that f(x) can be made as close to L as we please by taking the value of x sufficiently large. Similarly, $\lim_{x\to\infty} f(x) = L$ means that f(x) can be made as close to L as we please by taking the value of x sufficiently small (in the negative direction).

Example

 $\lim_{x\to\infty} 1/x = 0.$



$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

More Examples

Evaluate the limits:

1.
$$\lim_{x \to \infty} \frac{x-1}{x^3+2}$$
 = •

2.
$$\lim_{x\to\infty} \frac{3x^2-2x+1}{4x^2-1}$$
 = $\frac{3}{4}$?

3.
$$\lim_{x \to \infty} \frac{x^4 - x^2 + 2}{x^3 + 3} \longrightarrow \infty$$
(DNE)

Dominant Term Rue

(rational functions)

For the limit $\lim_{x\to\infty}P(x)/Q(x)$, where P(x) is a polynomial of degree n and Q(x) is a polynomial of degree m,

- 1. If n < m, the limit is 0,
- 2. If n > m, the limit is $\pm \infty$,
- 3. If n=m, the limit is the quotient of the coefficients of the highest powers.

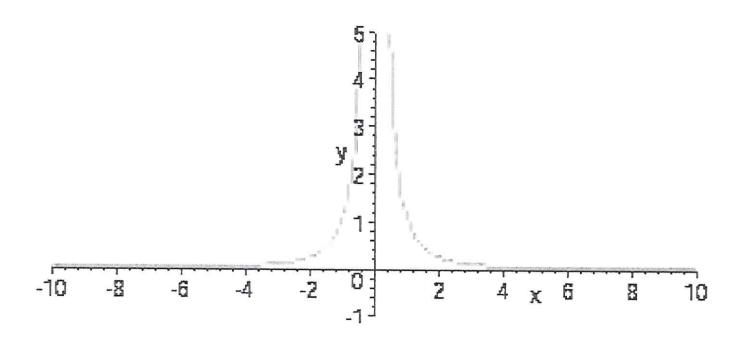
Example

Evaluate the limit:

$$\lim_{x \to \infty} \frac{x}{\sqrt{3x^2 + 2}}$$

Infinite Limits

Compute the limit $\lim_{x\to 0} 1/x^2$.



Evaluate $\lim_{x\to\pi/2}\tan x$.

DNE

