Tangent and normal lines.

Recall: in order to write down the equation for a line, it's usually easiest to start with point-slope form:

$$
y=m\left(x-x_{0}\right)+y_{0}, \quad \text { where } m=\text { slope, and }\left(x_{0}, y_{0}\right) \text { is a point on the line. }
$$

For a line tangent to a curve $y=f(x)$ at $x=a$, $m=f^{\prime}(a) \quad$ and $\quad\left(x_{0}, y_{0}\right)=(a, f(a))$.

For a line normal to a curve $y=f(x)$ at $x=a$, $m=-1 / f^{\prime}(a) \quad$ and $\quad\left(x_{0}, y_{0}\right)=(a, f(a))$.

A. The basics

Find the equation of the tangent line to...
(1) $f(x)=x^{2}$ at $x=3$.
(2) $f(x)=x^{3}$ at $x=2$.
(3) $f(x)=x^{2}+2 x+3$ at $x=1$.
(4) $f(x)=x^{2}-4$ at $x=5$.
(5) $f(x)=x^{3}-1$ at $x=-1$.
(6) $f(x)=\frac{x+1}{x-3}$ at $x=2$.
(7) $f(x)=\sqrt{x}$ at $x=9$.
(8) $f(x)=\frac{1}{x}$ at $x=2$.
(9) $f(x)=\frac{1}{x^{2}}$ at $x=-8$.
(10) $f(x)=e^{x}$ at $x=0$.
(11) $f(x)=e^{x}$ at $x=1$.
(12) $f(x)=\ln (x)$ at $x=e$.
(13) $f(x)=\ln (x)$ at $x=17$.
(14) $f(x)=\sin (x)$ at $x=\pi / 3$.
(15) $f(x)=\cos (x)$ at $x=\pi / 4$.
(16) $f(x)=\tan (x)$ at $x=-\pi / 4$.

Answers

(1) $y=6 x-9$
(2) $y=12 x-16$
(3) $y=4 x+2$
(4) $y=10 x-29$
(5) $y=3 x+1$
(6) $y=5 x-4$
(7) $y=\frac{1}{6} x+\frac{3}{2}$
(8) $y=-\frac{1}{4} x+1$
(9) $y=\frac{1}{2^{8}} x+\frac{3}{2^{6}}$
(10) $y=x+1$
(11) $y=e x$
(12) $y=\frac{1}{e} x$
(13) $y=\frac{1}{17} x-1+\ln (17)$
(14) $y=\frac{1}{2} x-\frac{\pi}{6}+\frac{\sqrt{3}}{2}$
(15) $y=-\frac{1}{\sqrt{2}} x+\frac{\pi+4}{4 \sqrt{2}}$
(16) $y=2 x+\frac{\pi}{2}-1$

B. A little trickier

(1) Find the equations of the tangent and normal to the curve $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at the point where $x=1$.
(2) Find the equations of the tangent and normal to the curve $y=\cot ^{2} x-2 \cot x+2$ at $x=\pi / 4$.
(3) [parametric curves] Find the equation of the tangent to the curve given by the equations $x=\theta+\sin (\theta)$ and $y=1+\cos (\theta)$ at $\theta=\pi / 4$.
(4) [parametric curves] Find the equation of the tangent to the curve given by the equations $x=a \cos \theta$ and $y=b \sin \theta$ at $\theta=\pi / 4$.
(5) [parametric curves] For a general t find the equation of the tangent and normal to the curve given by the equations $x=a \cos t$ and $y=b \sin t$.
(6) [parametric curves] For a general t find the equation of the tangent and normal to the curve $x=a \sec t$, $y=b \tan t$.
(7) [parametric curves] For a general t find the equation of the tangent and normal to the curve given by the equations $x=a(t+\sin t)$ and $y=b(1-\cos t)$.
(8) [implicit curves] Find the equations of the tangent and normal to the curve $16 x^{2}+9 y^{2}=144$ at $\left(x_{1}, y_{1}\right)$ where $x_{1}=2$ and $y_{1}>0$.
(9) Find the equation of the tangent to the curve $y=\sec ^{4} x-\tan ^{4} x$ at $x=\pi / 3$.
(10) Find the equation of the normal to the curve $y=(\sin 2 x+\cot x+2)^{2}$ at $x=\pi / 2$.
(11) Find the equation of the normal to the curve $y=\frac{1+\sin x}{\cos x}$ at $x=\pi / 4$.
(12) Show that the tangents to the curve $y=2 x^{3}-3$ at the points where $x=2$ and $x=-2$ are parallel.
(13) Show that the tangents to the curve $y=x^{2}-5 x+6$ at the points $(2,0)$ and $(3,0)$ are at right angles to eachother.
(14) Find the points on the curve $2 a^{2} y=x^{3}-3 a x^{2}$ where the tangent is parallel to the x-axis.
(15) For the curve $y(x-2)(x-3)=x-7$ show that the tangent is parallel to the x-axis at the points for which $x=7 \pm 2 \sqrt{5}$.
(16) Find the points on the curve $y=4 x^{3}-2 x^{5}$ at which the tangent passes through the origin.
(17) [implicit curves] Find the points on the circle $x^{2}+y^{2}=13$ where the tangent is parallel to the line $2 x+3 y=7$.
(18) Find the point on the curve $y=3 x^{2}+4$ at which the tangent is perpendicular to a line whose slope is $-1 / 6$.
(19) [implicit curves] Find the equations of the normals to the curve $2 x^{2}-y^{2}=14$ parallel to the line $x+3 y=4$.
(20) Find the equation of the tangent to the curve $x^{2}+2 y=8$ which is perpendicular to the line $x-2 y+1=0$.
(21) [implicit curves] If the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve $\left(\frac{x}{a}\right)^{n /(n-1)}+\left(\frac{y}{b}\right)^{n /(n-1)}=1$ show that $(a \cos \alpha)^{n}+(b \sin \alpha)^{n}=p^{n}$.

Answers

(1) $y=2(x-1)+3, y=-\frac{1}{2}(x-1)+3$
(2) $y=1, x=\pi / 4$
(3) $y=\frac{1+\sqrt{2} / 2}{-\sqrt{2} / 2}(x-\pi / 4-\sqrt{2} / 2)+1+\sqrt{2} / 2$
(4) $y=-\frac{a}{b}(x-a \sqrt{2} / 2)+b \sqrt{2} / 2$
(5) $y=-\frac{a \sin (t)}{b \cos (t)}(x-a \cos (t))+b \sin (t), y=\frac{b \cos (t)}{a \sin (t)}(x-a \cos (t))+b \sin (t)$
(6) $y=\frac{a \tan (t)}{b \sec (t)}(x-a \sec (t))+b \tan (t), y=-\frac{b \sec (t)}{a \tan (t)}(x-a \sec (t))+b \tan (t)$
(7) $y=\frac{a(1+\cos (t))}{b(\sin (t))}(x-a(t+\sin t))+b(1-\cos t), y=-\frac{b(\sin (t))}{a(1+\cos (t))}(x-a(t+\sin t))+b(1-\cos t)$
(8) $y=-\frac{8}{3 \sqrt{5}} x+\frac{12}{\sqrt{5}}, y=\frac{3 \sqrt{5}}{8} x+\frac{7 \sqrt{5}}{12}$
(9) $y=16 \sqrt{3} x-16 \pi / \sqrt{3}+7$
(10) $y=\frac{1}{12} x-\frac{\pi}{24}+4$
(11) $y=\left(\frac{1}{\sqrt{2}}-1\right) x+\frac{16+12 \sqrt{2}+\pi}{8+4 \sqrt{2}}$
(12) (show they have the same m)
(13) (show their slopes satisfy $m_{1}=-1 / m_{2}$)
(14) $x=0,2 a$
(15) (show $m=0$)
(18) $y=6 x+1$
(17) $(2,3),(-2,-3)$
(20) $y=-2 x-2$

