Combinatorics and representation theory of diagram algebras.

Zajj Daugherty
The City College of New York
\& The CUNY Graduate Center

February 3, 2020
Slides available at https://zdaugherty.ccnysites.cuny.edu/research/

Combinatorial representation theory

Combinatorial representation theory

Representation theory: Given an algebra $A \ldots$

- What are the A-modules/representations?
(Actions $A \subset V$ and homomorphisms $\varphi: A \rightarrow \operatorname{End}(V)$)
- What are the simple/indecomposable A-modules/reps?
- What are their dimensions?
- What is the action of the center of A ?
- How can I combine modules to make new ones, and what are they in terms of the simple modules?

Combinatorial representation theory

Representation theory: Given an algebra A...

- What are the A-modules/representations?
(Actions $A \subset V$ and homomorphisms $\varphi: A \rightarrow \operatorname{End}(V)$)
- What are the simple/indecomposable A-modules/reps?
- What are their dimensions?
- What is the action of the center of A ?
- How can I combine modules to make new ones, and what are they in terms of the simple modules?

In combinatorial representation theory, we use combinatorial objects to index (construct a bijection to) modules and representations, and to encode information about them.

Motivating example: Schur-Weyl Duality

The symmetric group S_{k} (permutations) as diagrams:

Motivating example: Schur-Weyl Duality

The symmetric group S_{k} (permutations) as diagrams:

(with multiplication given by concatenation)

Motivating example: Schur-Weyl Duality

The symmetric group S_{k} (permutations) as diagrams:

(with multiplication given by concatenation)

Motivating example: Schur-Weyl Duality

The symmetric group S_{k} (permutations) as diagrams:

(with multiplication given by concatenation)

Motivating example: Schur-Weyl Duality

$\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

Motivating example: Schur-Weyl Duality

$\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

S_{k} also acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ by place permutation.

Motivating example: Schur-Weyl Duality

$\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

S_{k} also acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ by place permutation.

These actions commute!

Motivating example: Schur-Weyl Duality

Schur (1901): S_{k} and GL_{n} have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$.
Even better,
\(\underbrace{\operatorname{End}_{\mathrm{GL}_{n}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)}_{\left.\begin{array}{c}(all linear maps that

commute with GL\end{array}\right)}=\underbrace{\pi\left(\mathbb{C} S_{k}\right)}_{\)| (img of S_{k} |
| :---: |
| action) |$}$ and $\operatorname{End}_{S_{k}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\underbrace{\rho\left(\mathbb{C G L} L_{n}\right)}_{$| (img of GL |
| :---: |
| action) |$}$.

Motivating example: Schur-Weyl Duality

Schur (1901): S_{k} and GL_{n} have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$.
Even better,

$\underbrace{\operatorname{End}_{\mathrm{GL}_{n}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)}_{$| (all linear maps that |
| :---: |
| commute with GL $\mathrm{GL}_{n} \text {) }$ |$}=\underbrace{\pi\left(\mathbb{C} S_{k}\right)}_{$| (img of S_{k} |
| :---: |
| action) |$}$ and $\operatorname{End}_{S_{k}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\underbrace{\rho\left(\mathbb{C G L} L_{n}\right)}_{$| (img of GL |
| :---: |
| action) |$}$.

Powerful consequence:
The double-centralizer relationship produces

$$
\left(\mathbb{C}^{n}\right)^{\otimes k} \cong \underset{\lambda \vdash k}{\bigoplus} G^{\lambda} \otimes S^{\lambda} \quad \text { as a } \mathrm{GL}_{n}-S_{k} \text { bimodule, }
$$

where G^{λ} are distinct irreducible GL_{n}-modules
where S^{λ} are distinct irreducible S_{k}-modules

Motivating example: Schur-Weyl Duality

Schur (1901): S_{k} and GL_{n} have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$.
Even better,

$\underbrace{\operatorname{End}_{\mathrm{GL}_{n}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)}_{$| (all linear maps that |
| :---: |
| commute with GL $\mathrm{GL}_{n} \text {) }$ |$}=\underbrace{\pi\left(\mathbb{C} S_{k}\right)}_{$| (img of S_{k} |
| :---: |
| action) |$}$ and $\operatorname{End}_{S_{k}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\underbrace{\rho\left(\mathbb{C G L}_{n}\right)}_{$| (img of GL |
| :---: |
| action) |$}$.

Powerful consequence:

The double-centralizer relationship produces

$$
\left(\mathbb{C}^{n}\right)^{\otimes k} \cong \underset{\lambda \vdash k}{\bigoplus} G^{\lambda} \otimes S^{\lambda} \quad \text { as a } \mathrm{GL}_{n}-S_{k} \text { bimodule }
$$

where G^{λ} are distinct irreducible GL_{n}-modules where S^{λ} are distinct irreducible S_{k}-modules
For example,

$$
\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}=\left(G^{\square \square} \otimes S^{\square \square}\right) \oplus\left(G^{\square} \otimes S^{\square}\right) \oplus\left(G^{\square} \otimes S^{\square}\right)
$$

Representation theory of $V^{\otimes k}$

$$
V=\mathbb{C}=L(\square)
$$

Representation theory of $V^{\otimes k}$

$$
V=\mathbb{C}=L(\square), \quad L(\square)
$$

\varnothing

Representation theory of $V^{\otimes k}$

$$
\begin{array}{r}
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square) \\
\varnothing \\
\\
\\
\square \\
\square \\
\square \\
\square
\end{array}
$$

Representation theory of $V^{\otimes k}$

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square)
$$

Representation theory of $V^{\otimes k}$

Representation theory of $V^{\otimes k}$

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \cdots
$$

Representation theory of $V^{\otimes k}$

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \cdots
$$

Representation theory of $V^{\otimes k}$

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \cdots
$$

More centralizer algebras

Brauer (1937)
Orthogonal and symplectic groups (and Lie algebras) acting on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally centralize the Brauer algebra:

Diagrams encode maps $V^{\otimes k} \rightarrow V^{\otimes k}$ that commute with the action of some classical algebra.

More centralizer algebras

Representation theory of $V^{\otimes k}$, orthogonal and symplectic:

$$
V=\mathbb{C}=L(\square)
$$

More centralizer algebras

Representation theory of $V^{\otimes k}$, orthogonal and symplectic:

$$
V=\mathbb{C}=L(\square), \quad L(\square)
$$

More centralizer algebras

Representation theory of $V^{\otimes k}$, orthogonal and symplectic:

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square)
$$

More centralizer algebras

Representation theory of $V^{\otimes k}$, orthogonal and symplectic:

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square)
$$

More centralizer algebras

Representation theory of $V^{\otimes k}$, orthogonal and symplectic:

More centralizer algebras

Brauer (1937)
Orthogonal and symplectic groups (and Lie algebras) acting on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally centralize the Brauer algebra:

$$
\begin{gathered}
\delta_{b, c} \sum_{i=1}^{n} v_{i} \otimes v_{i} \otimes v_{a} \otimes v_{d} \otimes v_{d} \\
\text { with } \longrightarrow=n
\end{gathered}
$$

Temperley-Lieb (1971)
GL_{2} and SL_{2} (and $\mathfrak{g l}_{2}$ and $\mathfrak{s l}_{2}$) acting on $\left(\mathbb{C}^{2}\right)^{\otimes k}$ diagonally centralize the Temperley-Lieb algebra:

Diagrams encode maps $V^{\otimes k} \rightarrow V^{\otimes k}$ that commute with the action of some classical algebra.

More diagram algebras: braids

The braid group:

(with multiplication given by concatenation)

More diagram algebras: braids

The braid group:

(with multiplication given by concatenation)

More diagram algebras: braids

The affine (one-pole) braid group:

(with multiplication given by concatenation)

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.
$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

$$
\check{\mathcal{R}}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that (1) satisfies braid relations, and
(2) commutes with the action on $V \otimes W$
for any \mathcal{U}-module V.

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.
$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

$$
\check{\mathcal{R}}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that (1) satisfies braid relations, and
(2) commutes with the action on $V \otimes W$
for any \mathcal{U}-module V.
The braid group shares a commuting action with \mathcal{U} on $V^{\otimes k}$:

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.
$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

$$
\check{\mathcal{R}}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that (1) satisfies braid relations, and
(2) commutes with the action on $V \otimes W$
for any \mathcal{U}-module V.
The one-pole/affine braid group shares a commuting action with \mathcal{U} on $M \otimes V^{\otimes k}$:

Around the pole:

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.
$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

$$
\check{\mathcal{R}}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that (1) satisfies braid relations, and
(2) commutes with the action on $V \otimes W$
for any \mathcal{U}-module V.
The two-pole braid group shares a commuting action with \mathcal{U} on $M \otimes V^{\otimes k} \otimes N$:

Around the pole:

Universal

Type B, C, D
(orthog. \& sympl.)

Two-pole braids $\xrightarrow[H 2]{A}$

Hecke algebra

$$
\mathscr{S}=a \mathscr{S}+!!
$$

Affine Hecke of type C (+twists)

Small Type A
$\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)$

$\stackrel{\stackrel{\rightharpoonup}{\gtrless}}{\stackrel{\otimes}{\stackrel{\otimes}{*}}}$

$M \otimes\left(V^{\otimes k}\right) \otimes N$

Universal

Type B, C, D
Type A
Small Type A
(orthog. \& sympl.)
(gen. \& sp. linear)

$$
\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)
$$

$\frac{60}{0}$
$\frac{2}{2}$
.$\frac{0}{4}$

Hecke algebra

$$
\mathscr{S}=a \grave{O}+!!
$$

Two-pole braids

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl (BMW) algebras, built from Brauer algebras and their Jucys-Murphy elements.

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl (BMW) algebras, built from Brauer algebras and their Jucys-Murphy elements.
Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.

Qu. grps:

Orthogonal and
symplectic
(types B, C, D) Lie algs:

Deg. 2-bdry BMW

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl (BMW) algebras, built from Brauer algebras and their Jucys-Murphy elements.
Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.
D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

Affine BMW algebra

Closed loops:

Degenerate affine BMW algebra

Closed loops:

Example: "Admissibility conditions"

Affine BMW algebra

Closed loops:

Degenerate affine BMW algebra

Closed loops:

The associated parameters of the algebra, e.g.

aren't entirely free.

Example: "Admissibility conditions"

Affine BMW algebra

Closed loops:

Degenerate affine BMW algebra

Closed loops:

The associated parameters of the algebra, e.g.

aren't entirely free.
Important insight: As operators on tensor space $M \otimes V \otimes V$,

"Higher Casimir invariants"

Qu. grps:

Orthogonal and
symplectic
(types B, C, D) Lie algs:

Deg. 2-bdry BMW

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl (BMW) algebras, built from Brauer algebras and their Jucys-Murphy elements.
Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.
D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

D.-González-Schneider-Sutton:

Constructing 2-boundary analogues (in progress.).

Qu. grps:

Orthogonal and
symplectic
(types B, C, D) Lie algs:

Deg. 2-bdry BMW

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl (BMW) algebras, built from Brauer algebras and their Jucys-Murphy elements.
Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.
D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

D.-González-Schneider-Sutton:

Constructing 2-boundary analogues (in progress.).

Balagovic et al.:

Signed versions and representations of periplectic Lie superalgebras.

Universal

Type B, C, D
Type A
Small Type A
(orthog. \& sympl.)
(gen. \& sp. linear)

$$
\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)
$$

$\frac{60}{0}$
$\frac{2}{2}$
.$\frac{0}{4}$

Hecke algebra

$$
\mathscr{S}=a \grave{O}+!!
$$

Two-pole braids

Universal

Type B, C, D
Type A
Small Type A
(orthog. \& sympl.)
(gen. \& sp. linear)

$$
\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)
$$

Hecke algebra

$$
\dot{S}=a \grave{O}+!!
$$

sdnoィ®ి mnłuenð

Type B, C, D Type A
(orthog. \& sympl.) (gen. \& sp. linear)

Small Type A
$\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)$


```
Type B, C, D
                                    Type A
                                    (gen. & sp. linear)
                                    (orthog. & sympl.)
```

 Small Type A
 \(\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)\)

Two boundary algebras (type A)
Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra $T L_{k}$:

Type B, C, D Type A
(orthog. \& sympl.)

Two boundary algebras (type A)
Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra $T L_{k}$:

de Gier, Nichols (2008): Explored representation theory of $T L_{k}$ using diagrams and established a connection to the affine Hecke algebras of type A and C.

Type B, C, D Type A
(orthog. \& sympl.)

Two boundary algebras (type A)
Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra $T L_{k}$:

de Gier, Nichols (2008): Explored representation theory of $T L_{k}$ using diagrams and established a connection to the affine Hecke algebras of type A and C.
D. (2010): The centralizer of $\mathfrak{g l}_{n}$ acting on tensor space $M \otimes V^{\otimes k} \otimes N$ displays type C combinatorics for good choices of M, N, and V.

The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

$$
T_{k}=\frac{i}{6}, \quad T_{0}=\underbrace{9,}_{0} \text { and } T_{i}=\underbrace{i+1}_{i+1} \quad \text { for } 1 \leqslant i \leqslant k-1
$$

The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

$$
T_{k}=\overbrace{\cdot}^{\cdot T}, \quad T_{0}=\underbrace{9,}_{0} \text { and } T_{i}=\underbrace{i+1}_{i=1} \quad \text { for } 1 \leqslant i \leqslant k-1 \text {, }
$$

subject to relations

The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

$$
T_{k}=\overbrace{}^{\cdot!}, \quad T_{0}=\underbrace{\prod_{0}}_{\square \cdot} \text { and } \quad T_{i}=\underbrace{i+1}_{i=1} \quad \text { for } 1 \leqslant i \leqslant k-1 \text {, }
$$

subject to relations

The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

$$
T_{k}=\overbrace{\cdot}^{\cdot p}, \quad T_{0}=\underbrace{\eta,}_{\sigma \cdot} \text { and } T_{i}=\underbrace{i+1}_{i+1} \quad \text { for } 1 \leqslant i \leqslant k-1 \text {, }
$$

subject to relations

and, similarly, $T_{k-1} T_{k} T_{k-1} T_{k}=T_{k} T_{k-1} T_{k} T_{k-1}$.

The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by
subject to relations

i.e.

(1) The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

$$
T_{k}=\overbrace{\cdot}^{\cdot \mid}, \quad T_{0}=\underbrace{\cap,}_{V \cdot} \text { and } T_{i}=\underbrace{i+1}_{i} \quad \text { for } 1 \leqslant i \leqslant k-1 \text {, }
$$

(1) The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

$$
T_{k}=\cdot_{\cdot}^{\cdot T}, \quad T_{0}=\underbrace{\prod_{0}}_{0 \cdot} \text { and } T_{i}=\underbrace{i+1}_{i=1} \quad \text { for } 1 \leqslant i \leqslant k-1 \text {, }
$$

(2) Fix constants $t_{0}, t_{k}, t \in \mathbb{C}$.

The affine type C Hecke algebra \mathcal{H}_{k} is the quotient of $\mathbb{C B}_{k}$ by the relations

$$
\begin{aligned}
& \left(T_{0}-t_{0}^{1 / 2}\right)\left(T_{0}+t_{0}^{-1 / 2}\right)=0, \quad\left(T_{k}-t_{k}^{1 / 2}\right)\left(T_{k}+t_{k}^{-1 / 2}\right)=0 \\
& \text { and } \quad\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)=0 \quad \text { for } i=1, \ldots, k-1
\end{aligned}
$$

(1) The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

(2) Fix constants $t_{0}, t_{k}, t=t_{1}=t_{2}=\cdots=t_{k-1} \in \mathbb{C}$.

The affine type C Hecke algebra \mathcal{H}_{k} is the quotient of $\mathbb{C} \mathcal{B}_{k}$ by the relations $\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0$.
(1) The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

(2) Fix constants $t_{0}, t_{k}, t=t_{1}=t_{2}=\cdots=t_{k-1} \in \mathbb{C}$.

The affine type C Hecke algebra \mathcal{H}_{k} is the quotient of $\mathbb{C B}_{k}$ by the relations $\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0$.
(3) Set

$$
\begin{aligned}
& \left(e_{0}=t_{0}^{1 / 2}-T_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(e_{k}=t_{k}^{1 / 2}-T_{k}\right) \\
& \stackrel{\bullet}{\bullet}=t^{1 / 2} \text { •••••• } \\
& \left(e_{i}=t^{1 / 2}-T_{i}\right)
\end{aligned}
$$

so that $e_{j}^{2}=z_{j} e_{j}\left(\right.$ for $\left.\operatorname{good} z_{j}\right)$.
(1) The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

$$
T_{k}=\overbrace{\cdot}^{\cdot \mathrm{U}}, \quad T_{0}=\underbrace{\cap \cdot}_{0} \text { and } T_{i}=\underbrace{i+1}_{i} \quad \text { for } 1 \leqslant i \leqslant k-1 \text {, }
$$

(2) Fix constants $t_{0}, t_{k}, t=t_{1}=t_{2}=\cdots=t_{k-1} \in \mathbb{C}$.

The affine type C Hecke algebra \mathcal{H}_{k} is the quotient of $\mathbb{C} \mathcal{B}_{k}$ by the relations $\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0$.
(3) Set

$$
\begin{aligned}
& \overbrace{6}^{\bullet}=t_{k}^{1 / 2} \cdot \|-\overbrace{6}^{\bullet} \\
& \left(e_{k}=t_{k}^{1 / 2}-T_{k}\right) \\
& \cdots=t^{1 / 2} \cdot \bullet-\text { ••• } \\
& \left(e_{i}=t^{1 / 2}-T_{i}\right)
\end{aligned}
$$

so that $e_{j}^{2}=z_{j} e_{j}\left(\right.$ for good $\left.z_{j}\right)$.
The two-boundary Temperley-Lieb algebra is the quotient of \mathcal{H}_{k} by the relations $e_{i} e_{i \pm 1} e_{i}=e_{i}$ for $i=1, \ldots, k-1$.
(1) The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

$$
T_{k}=\overbrace{6}^{!}, \quad T_{0}=\underbrace{\eta \cdot}_{\Delta \cdot} \text { and } T_{i}=\underbrace{i+1}_{i+1} \quad \text { for } 1 \leqslant i \leqslant k-1 \text {. }
$$

(2) Fix constants $t_{0}, t_{k}, t=t_{1}=t_{2}=\cdots=t_{k-1} \in \mathbb{C}$.

The affine type C Hecke algebra \mathcal{H}_{k} is the quotient of $\mathbb{C} \mathcal{B}_{k}$ by the relations $\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0$.
(3) Set

so that $e_{j}^{2}=z_{j} e_{j}$. The two-boundary Temperley-Lieb algebra is the quotient of \mathcal{H}_{k} by the relations $e_{i} e_{i \pm 1} e_{i}=e_{i}$ for $i=1, \ldots, k-1$.

Type B, C, D
(orthog. \& sympl.)

Type A
(gen. \& sp. linear)

Small Type A
$\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)$

Theorem (D.-Ram)
(1) Let $U=U_{q} \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g}. Let M, N, and V be finite-dimensional modules.
The two-boundary braid group B_{k} acts on $M \otimes(V)^{\otimes k} \otimes N$ and this action commutes with the action of U.
(2) If $\mathfrak{g}=\mathfrak{g l}_{n}$, then (for correct choices of M, N, and V), the affine Hecke algebra of type C, H_{k}, acts on $M \otimes(V)^{\otimes k} \otimes N$ and this action commutes with the action of U.
(3) If $\mathfrak{g}=\mathfrak{g l}_{2}$, then the action of the two-boundary Temperley-Lieb algebra factors through the T.L. quotient of H_{k}.

Theorem (D.-Ram)
(1) Let $U=U_{q} \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g}. Let M, N, and V be finite-dimensional modules.
The two-boundary braid group B_{k} acts on $M \otimes(V)^{\otimes k} \otimes N$ and this action commutes with the action of U.
(2) If $\mathfrak{g}=\mathfrak{g l}_{n}$, then (for correct choices of M, N, and V), the affine Hecke algebra of type C, H_{k}, acts on $M \otimes(V)^{\otimes k} \otimes N$ and this action commutes with the action of U.
(3) If $\mathfrak{g}=\mathfrak{g l}_{2}$, then the action of the two-boundary Temperley-Lieb algebra factors through the T.L. quotient of H_{k}.

Some results:
(a) A diagrammatic intuition for H_{k}.
(b) A combinatorial classification and construction of irreducible representations of H_{k} (type C with distinct parameters) via central characters and generalizations of Young tableaux.
(c) A classification of the representations of $T L_{k}$ in [dGN08] via central characters, including answers to open questions and conjectures regarding their irreducibility and isomorphism classes.

Move both poles
to the left \downarrow

Jucys-Murphy elements:

$$
Y_{i}=\frac{\|-\|-i-i}{\| \| \cdot i_{i}^{i}} \cdot!\cdot
$$

- Pairwise commute

Move both poles
to the left

Jucys-Murphy elements:

$$
Y_{i}=\frac{\|-\|-i-i^{i}}{U \mathbb{U} \cdot{ }_{i}} \cdot!
$$

- Pairwise commute
- $Z\left(\mathcal{H}_{k}\right)$ is (type-C) symmetric Laurent polynomials in Z_{i} 's

Move both poles
to the left \downarrow

Jucys-Murphy elements:

$$
Y_{i}=\frac{\|-\|-i i^{i}}{U \mathbb{U} \cdot{ }_{i}} \cdot!
$$

- Pairwise commute
- $Z\left(\mathcal{H}_{k}\right)$ is (type-C) symmetric Laurent polynomials in Z_{i} 's
- Central characters indexed by $\mathbf{c} \in \mathbb{C}^{k}$ (modulo signed permutations)

Back to tensor space operators properties

The eigenvalues of the T_{i} 's must coincide with the eigenvalues of the corresponding R-matrices, which can be computed combinatorially.

$$
\begin{gathered}
0=\left(T_{0}-t_{0}\right)\left(T_{0}-t_{0}^{-1}\right)=\left(T_{k}-t_{k}\right)\left(T_{k}-t_{k}^{-1}\right)=\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right) \\
T_{0}=\underbrace{\prod_{\theta}}_{\bullet \bullet} \propto \check{R}_{V M} \check{R}_{M V} T_{k}=\int^{9} \propto \check{R}_{N V} \check{R}_{V N} \quad T_{i}=\int_{i}^{i+1} \underbrace{i+1}_{i+1} \propto \check{R}_{V V}
\end{gathered}
$$

Back to tensor space operators properties

The eigenvalues of the T_{i} 's must coincide with the eigenvalues of the corresponding R-matrices, which can be computed combinatorially.

$$
0=\left(T_{0}-t_{0}\right)\left(T_{0}-t_{0}^{-1}\right)=\left(T_{k}-t_{k}\right)\left(T_{k}-t_{k}^{-1}\right)=\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)
$$

$$
T_{0}=\underbrace{\prod_{\cdot}}_{\bullet \cdot} \propto \check{R}_{V M} \check{R}_{M V} \quad T_{k}=\overbrace{\cdot}^{\cdot 9} \propto \check{R}_{N V} \check{R}_{V N} \quad T_{i}=\int_{i}^{i+1} \propto \check{R}_{V V}
$$

Back to tensor space operators properties

The eigenvalues of the T_{i} 's must coincide with the eigenvalues of the corresponding R-matrices, which can be computed combinatorially.

$$
0=\left(T_{0}-t_{0}\right)\left(T_{0}-t_{0}^{-1}\right)=\left(T_{k}-t_{k}\right)\left(T_{k}-t_{k}^{-1}\right)=\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)
$$

$$
\begin{aligned}
& T_{0}=\underbrace{\prod^{\prime}}_{U} \propto \check{R}_{V M} \check{R}_{M V} \\
& T_{k}=\overbrace{\cdot}^{9} \propto \check{R}_{N V} \check{R}_{V N} \\
& T_{i}=\overbrace{i}^{i} \int_{i+1}^{i+1} \propto \check{R}_{V V} \\
& t_{0}=-q^{2\left(a_{0}+b_{0}\right)} \\
& t_{k}=-q^{2\left(a_{k}+b_{k}\right)} \\
& t=q^{2}
\end{aligned}
$$

Exploring $M \otimes N \otimes L(\square)^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a_{0}^{b_{0}}\right)\right) \otimes L\left(\left(a_{k}^{b_{k}}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda)
$$

(multiplicity one!)
where Λ is the following set of partitions:

Exploring $M \otimes N \otimes L(\square)^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a_{0}^{b_{0}}\right)\right) \otimes L\left(\left(a_{k}^{b_{k}}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda)
$$

(multiplicity one!)
where Λ is the following set of partitions:

Exploring $M \otimes N \otimes L(\square)^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a_{0}^{b_{0}}\right)\right) \otimes L\left(\left(a_{k}^{b_{k}}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda)
$$

(multiplicity one!)
where Λ is the following set of partitions:

Exploring $M \otimes N \otimes L(\square)^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a_{0}^{b_{0}}\right)\right) \otimes L\left(\left(a_{k}^{b_{k}}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda)
$$

(multiplicity one!)
where Λ is the following set of partitions:

Exploring $M \otimes N \otimes L(\square)^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a_{0}^{b_{0}}\right)\right) \otimes L\left(\left(a_{k}^{b_{k}}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions...

$$
\begin{array}{r}
\left(a_{0}^{b_{0}}\right) \otimes \square=\square \oplus \square \square \square \square \square \\
\oplus \square \square \square \square \square \square
\end{array}
$$

Exploring $M \otimes N \otimes L(\square)^{\otimes k}$

$$
\begin{gathered}
a_{0} \\
b_{0}
\end{gathered} \quad k=0
$$

Exploring $M \otimes N \otimes L(\square)^{\otimes k}$

Exploring $M \otimes N \otimes L(\square)^{\otimes k}$

Exploring $M \otimes N \otimes L(\square)^{\otimes k}$

$L(\square) \otimes L(\square) \otimes L(\square)$

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
(*) Basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ.
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
(*) Basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ.
(*) Calibrated (Y_{i} 's are diagonalized)
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
(*) Basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ.
(*) Calibrated (Y_{i} 's are diagonalized)
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$ Shift by $\xrightarrow{\frac{1}{2}\left(a_{0}-b_{0}+a_{k}-b_{k}\right)}$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
(*) Basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ.
(*) Calibrated (Y_{i} 's are diagonalized)
$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$

$$
\text { Shift by } \frac{1}{2}\left(a_{0}-b_{0}+a_{k}-b_{k}\right)
$$

$$
\begin{aligned}
Y_{1} & \mapsto t^{5.5} \\
Y_{2} & \mapsto t^{3.5} \\
Y_{3} & \mapsto t^{-4.5} \\
Y_{4} & \mapsto t^{-5.5} \\
Y_{5} & \mapsto t^{-2.5}
\end{aligned}
$$

Y_{1}	$\mapsto t^{5.5}$
Y_{2}	$\mapsto t^{3.5}$
Y_{3}	$\mapsto t^{-4.5}$
Y_{4}	$\mapsto t^{-5.5}$
Y_{5}	$\mapsto t^{-2.5}$

(*) H_{k} representations in tensor space are labeled by certain partitions λ.
(*) Basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ.
(*) Calibrated (Y_{i} 's are diagonalized): Y_{i} acts by t to the shifted diagonal number of box $_{i}$.
(Think: signed permutations.)

Universal
Type B, C, D
(orthog. \& sympl.)

Thanks!
https://zdaugherty.ccnysites.cuny.edu/

