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Combinatorial representation theory

Representation theory: Given an algebra A. . .

• What are the A-modules/representations?

(Actions A ýV and homomorphisms ϕ : AÑ EndpV q)

• What are the simple/indecomposable A-modules/reps?

• What are their dimensions?

• What is the action of the center of A?

• How can I combine modules to make new ones, and what are
they in terms of the simple modules?

In combinatorial representation theory, we use combinatorial
objects to index (construct a bijection to) modules and
representations, and to encode information about them.
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Motivating example: Schur-Weyl Duality

The symmetric group Sk (permutations) as diagrams:
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Motivating example: Schur-Weyl Duality

GLnpCq acts on Cn b Cn b ¨ ¨ ¨ b Cn “ pCnqbk diagonally.

g ¨ pv1 b v2 b ¨ ¨ ¨ b vkq “ gv1 b gv2 b ¨ ¨ ¨ b gvk.

Sk also acts on pCnqbk by place permutation.
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Motivating example: Schur-Weyl Duality
Schur (1901): Sk and GLn have commuting actions on pCnq

bk.

Even better,

EndGLn

´

pCnqbk
¯

loooooooooomoooooooooon

(all linear maps that
commute with GLn)

“ πpCSkq
loomoon

(img of Sk

action)

and EndSk

´

pCnqbk
¯

“ ρpCGLnq
loooomoooon

(img of GLn

action)

.

Powerful consequence:

The double-centralizer relationship produces

pCnqbk –
à

λ$k

Gλ b Sλ as a GLn-Sk bimodule,

where
Gλ are distinct irreducible GLn-modules
Sλ are distinct irreducible Sk-modules

For example,

Cn b Cn b Cn “
´

G b S
¯

‘

´

G b S
¯

‘

´

G b S
¯
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Representation theory of V bk

V “ C “ Lp q
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More centralizer algebras

Brauer (1937)
Orthogonal and symplectic groups
(and Lie algebras) acting on
pCnqbk diagonally centralize
the Brauer algebra:

va vb vc vd ve

vi vi va vd vdb

b

b

b

b

b

b

b

δb,c

n
ÿ

i“1

with “ n

Temperley-Lieb (1971)
GL2 and SL2 (and gl2 and sl2) act-
ing on pC2qbk diagonally centralize
the Temperley-Lieb algebra:

va vb vc vd ve

va vi vi vb veb

b

b

b

b

b

b

b

δc,d

2
ÿ

i“1

with “ 2

Diagrams encode maps V bk Ñ V bk that commute with the
action of some classical algebra.
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More diagram algebras: braids

The braid group:
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More diagram algebras: braids

The affine (one-pole) braid group:

1

1

1

“

(with multiplication given by concatenation)



Quantum groups and braids
Fix q P C, and let U “ Uqg be the Drinfeld-Jimbo quantum group
associated to Lie algebra g.

U b U has an invertible element R “
ř

RR1 bR2 that yields a map

ŘVW : V bW ÝÑW b V

W b V

V bW

that (1) satisfies braid relations, and
(2) commutes with the action on V bW

for any U-module V .

The braid group shares a commuting action
with U on V bk:

V

V

b

b

V
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V
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Around the pole:

MbV

MbV

“ ŘMV ŘVM
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Universal

Type B, C, D Type A Small Type A

(orthog. & sympl.) (gen. & sp. linear) (GL2 & SL2)
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Orthogonal
and

symplectic
(types B, C, D)

V bk M b V bk M b V bk
b N

Qu. grps:
BMW algebra Affine BMW 2-bdry BMW

Lie algs:
Brauer algebra Deg. aff. BMW Deg. 2-bdry BMW

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl
(BMW) algebras, built from Brauer algebras and their Jucys-Murphy
elements.

Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the
affine BMW algebras. [OR04] gave the action on M b V bk commuting
with the action of the quantum groups of types B, C, D.

D.-Ram-Virk: Used these centralizer relationships to study these two
algebras simultaneously. Results include computing the centers, handling
the parameters associated to the algebras, computing powerful
intertwiner operators, etc.

D.-González-Schneider-Sutton:
Constructing 2-boundary analogues
(in progress.).

Balagovic et al.:
Signed versions and representations of
periplectic Lie superalgebras.
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Example: “Admissibility conditions”

Affine BMW algebra

Closed loops:

, , ¨ ¨ ¨

Degenerate affine BMW algebra

Closed loops:

, , ¨ ¨ ¨

The associated parameters of the algebra, e.g.

“ z0 , “ z1 , “ z2 , ¨ ¨ ¨

aren’t entirely free.

Important insight: As operators on tensor space M b V b V ,

` P ZpUgq b Cb C and ` P ZpUqgq b Cb C.

“Higher Casimir invariants”



Example: “Admissibility conditions”

Affine BMW algebra

Closed loops:

, , ¨ ¨ ¨

Degenerate affine BMW algebra

Closed loops:

, , ¨ ¨ ¨

The associated parameters of the algebra, e.g.

“ z0 , “ z1 , “ z2 , ¨ ¨ ¨

aren’t entirely free.

Important insight: As operators on tensor space M b V b V ,

` P ZpUgq b Cb C and ` P ZpUqgq b Cb C.

“Higher Casimir invariants”



Example: “Admissibility conditions”

Affine BMW algebra

Closed loops:

, , ¨ ¨ ¨

Degenerate affine BMW algebra

Closed loops:

, , ¨ ¨ ¨

The associated parameters of the algebra, e.g.

“ z0 , “ z1 , “ z2 , ¨ ¨ ¨

aren’t entirely free.

Important insight: As operators on tensor space M b V b V ,

` P ZpUgq b Cb C and ` P ZpUqgq b Cb C.

“Higher Casimir invariants”



Orthogonal
and

symplectic
(types B, C, D)

V bk M b V bk M b V bk
b N

Qu. grps:
BMW algebra Affine BMW 2-bdry BMW

Lie algs:
Brauer algebra Deg. aff. BMW Deg. 2-bdry BMW

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl
(BMW) algebras, built from Brauer algebras and their Jucys-Murphy
elements.
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Two boundary algebras (type A)
Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model
with additional integrable boundary terms, introduced the two-boundary
Temperley-Lieb algebra TLk:

k dots

ev
en

#
d
o
ts

non-crossing diagrams

de Gier, Nichols (2008): Explored representation theory of TLk using
diagrams and established a connection to the affine Hecke algebras of
type A and C.
D. (2010): The centralizer of gln acting on tensor space M b V bk bN
displays type C combinatorics for good choices of M , N , and V .
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The two-boundary (two-pole) braid group Bk is generated by

Tk “ , T0 “ and Ti “
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i+1

i+1

for 1 ď i ď k ´ 1,

subject to relations

T0 T1 T2 Tk´2 Tk´1 Tk

i.e.

TiTi`1Ti “ “ “ Ti`1TiTi`1,

T1T0T1T0 “ “ “ T0T1T0T1,

and, similarly, Tk´1TkTk´1Tk “ TkTk´1TkTk´1.
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(1) The two-boundary (two-pole) braid group Bk is generated by

Tk “ , T0 “ and Ti “

i

i

i+1

i+1

for 1 ď i ď k ´ 1,

subject to relations
T0 T1 T2 Tk´2 Tk´1 Tk .

(2) Fix constants t0, tk, t P C.
The affine type C Hecke algebra Hk is the quotient of CBk by the
relations

pT0 ´ t
1{2
0 qpT0 ` t

´1{2
0 q “ 0, pTk ´ t

1{2
k qpTk ` t

´1{2
k q “ 0

and pTi ´ t
1{2qpTi ` t

´1{2q “ 0 for i “ 1, . . . , k ´ 1.

(3) Set

“ t
1{2
0 ´ pe0 “ t

1{2
0 ´ T0q

“ t
1{2
k ´ pek “ t

1{2
k ´ Tkq

“ t1{2 ´ pei “ t1{2 ´ Tiq

so that e2j “ zjej (for good zj).
The two-boundary Temperley-Lieb algebra is the quotient of Hk by the
relations eiei˘1ei “ ei for i “ 1, . . . , k ´ 1.
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Theorem (D.-Ram)

(1) Let U “ Uqg for any complex reductive Lie algebras g.
Let M , N , and V be finite-dimensional modules.

The two-boundary braid group Bk acts on M b pV qbk bN and this
action commutes with the action of U .

(2) If g “ gln, then (for correct choices of M , N , and V ),
the affine Hecke algebra of type C, Hk, acts on M b pV qbk bN
and this action commutes with the action of U .

(3) If g “ gl2, then the action of the two-boundary Temperley-Lieb
algebra factors through the T.L. quotient of Hk.

Some results:

(a) A diagrammatic intuition for Hk.

(b) A combinatorial classification and construction of irreducible
representations of Hk (type C with distinct parameters) via central
characters and generalizations of Young tableaux.

(c) A classification of the representations of TLk in [dGN08] via central
characters, including answers to open questions and conjectures
regarding their irreducibility and isomorphism classes.
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Back to tensor space operators properties
The eigenvalues of the Ti’s must coincide with the eigenvalues of
the corresponding R-matrices, which can be computed
combinatorially.

0 “ pT0 ´ t0qpT0 ´ t
´1
0 q “ pTk ´ tkqpTk ´ t

´1
k q “ pTi ´ t

1{2qpTi ` t
´1{2q

T0 “ 9 ŘVM ŘMV Tk “ 9 ŘNV ŘV N Ti “

i

i

i+1

i+1

9 ŘV V

a0

´b0

0 M

ak

´bk

0 N

1

´1

0 V

t0 “ ´q
2pa0`b0q tk “ ´q

2pak`bkq t “ q2
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Exploring M b N b Lp qbk

Products of rectangles:

Lppab00 qq b Lppak
bkqq “

à

λPΛ

Lpλq (multiplicity one!)

where Λ is the following set of partitions:

a0 ak

b0
bk
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