Combinatorics and representation theory of diagram algebras.

Zajj Daugherty

The City College of New York & The CUNY Graduate Center

February 3, 2020

Slides available at https://zdaugherty.ccnysites.cuny.edu/research/

Combinatorial representation theory

Representation theory: Given an algebra A...

- What are the A-modules/representations? (Actions $A \subset V$ and homomorphisms $\varphi : A \to \operatorname{End}(V)$)
- What are the simple/indecomposable A-modules/reps?
- What are their dimensions?
- What is the action of the center of A?
- How can I combine modules to make new ones, and what are they in terms of the simple modules?

In combinatorial representation theory, we use combinatorial objects to index (construct a bijection to) modules and representations, and to encode information about them.

Motivating example: Schur-Weyl Duality

The **symmetric group** S_k (permutations) as diagrams:

(with multiplication given by concatenation)

Motivating example: Schur-Weyl Duality

 $\mathrm{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

$$g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$$

 S_k also acts on $(\mathbb{C}^n)^{\otimes k}$ by place permutation.

These actions commute!

Motivating example: Schur-Weyl Duality

Schur (1901): S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$. Even better,

$$\underbrace{\operatorname{End}_{\operatorname{GL}_n}\left((\mathbb{C}^n)^{\otimes k}\right)}_{\text{(all linear maps that commute with }\operatorname{GL}_n)} = \underbrace{\pi(\mathbb{C}S_k)}_{\text{(img of }S_k} \quad \text{and} \quad \operatorname{End}_{S_k}\left((\mathbb{C}^n)^{\otimes k}\right) = \underbrace{\rho(\mathbb{C}\operatorname{GL}_n)}_{\text{(img of }\operatorname{GL}_n}.$$

Powerful consequence:

The double-centralizer relationship produces

$$(\mathbb{C}^n)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^\lambda \otimes S^\lambda$$
 as a GL_n - S_k bimodule,

where G^{λ} are distinct irreducible GL_n -modules S^{λ} are distinct irreducible S_k -modules For example,

$$\mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n = \left(G^{\square \square} \otimes S^{\square \square} \right) \oplus \left(G^{\square} \otimes S^{\square} \right) \oplus \left(G^{\square} \otimes S^{\square} \right)$$

Representation theory of $V^{\otimes k}$

More centralizer algebras

Brauer (1937)

Orthogonal and symplectic groups (and Lie algebras) acting on $(\mathbb{C}^n)^{\otimes k}$ diagonally centralize the **Brauer algebra**:

Temperley-Lieb (1971) GL_2 and SL_2 (and \mathfrak{gl}_2 and \mathfrak{sl}_2) acting on $(\mathbb{C}^2)^{\otimes k}$ diagonally centralize the **Temperley-Lieb algebra**:

Diagrams encode maps $V^{\otimes k} \to V^{\otimes k}$ that commute with the action of some classical algebra.

More centralizer algebras

Representation theory of $V^{\otimes k}$, orthogonal and symplectic:

More diagram algebras: braids

The **braid group**:

(with multiplication given by concatenation)

More diagram algebras: braids

The affine (one-pole) braid group:

(with multiplication given by concatenation)

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U} = \mathcal{U}_q \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g} .

 $\mathcal{U}\otimes\mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}}R_1\otimes R_2$ that yields a map

$$\check{\mathcal{R}}_{VW} \colon V \otimes W \longrightarrow W \otimes V$$

$$V \otimes W$$

$$V \otimes W$$

- that (1) satisfies braid relations, and
- (2) commutes with the action on $V \otimes W$ for any $\mathcal{U}\text{-module }V.$

The two-pole braid group shares a commuting action with \mathcal{U} on $M \otimes V^{\otimes k} \otimes N$:

Around the pole:

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl (BMW) algebras, built from Brauer algebras and their Jucys-Murphy elements.

Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.

D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

D.-González-Schneider-Sutton:

Constructing 2-boundary analogues (in progress.).

Balagovic et al.:

Signed versions and representations of periplectic Lie superalgebras.

Example: "Admissibility conditions"

The associated parameters of the algebra, e.g.

aren't entirely free.

Important insight: As operators on tensor space $M \otimes V \otimes V$,

Two boundary algebras (type A)

Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra TL_k :

de Gier, Nichols (2008): Explored representation theory of TL_k using diagrams and established a connection to the affine Hecke algebras of type A and C.

D. (2010): The centralizer of \mathfrak{gl}_n acting on tensor space $M \otimes V^{\otimes k} \otimes N$ displays type C combinatorics for good choices of M, N, and V.

The two-boundary (two-pole) braid group \mathcal{B}_k is generated by

$$T_k = \bigcap_{i=1}^{i}, \quad T_0 = \bigcap_{i=1}^{i} \quad \text{and} \quad T_i = \bigcap_{i=1}^{i} \quad \text{for } 1 \leqslant i \leqslant k-1,$$

subject to relations

i.e.

$$T_i T_{i+1} T_i = \underbrace{} = \underbrace{} = T_{i+1} T_i T_{i+1},$$

$$T_1 T_0 T_1 T_0 = \underbrace{} = \underbrace{} = T_0 T_1 T_0 T_1,$$

and, similarly, $T_{k-1}T_kT_{k-1}T_k = T_kT_{k-1}T_kT_{k-1}$.

(1) The two-boundary (two-pole) braid group \mathcal{B}_k is generated by

$$T_k = \bigcap_{i=1}^{n}, \quad T_0 = \bigcap_{i=1}^{n} \quad \text{and} \quad T_i = \bigcap_{i=1}^{n} \quad \text{for } 1 \leqslant i \leqslant k-1,$$

(2) Fix constants $t_0, t_k, t \in \mathbb{C}$.

The affine type C Hecke algebra \mathcal{H}_k is the quotient of $\mathbb{C}\mathcal{B}_k$ by the relations

$$(T_0 - t_0^{1/2})(T_0 + t_0^{-1/2}) = 0, \quad (T_k - t_k^{1/2})(T_k + t_k^{-1/2}) = 0$$

and $(T_i - t^{1/2})(T_i + t^{-1/2}) = 0$ for $i = 1, \dots, k - 1$.

(1) The two-boundary (two-pole) braid group \mathcal{B}_k is generated by

$$T_k = \bigcap_{i=1}^n, \quad T_0 = \bigcap_{i=1}^n \quad \text{and} \quad T_i = \bigcap_{i=1}^n \quad \text{for } 1 \leqslant i \leqslant k-1,$$

subject to relations T_0 T_1 T_2 T_{k-2} T_{k-1} T_k

(2) Fix constants $t_0, t_k, t = t_1 = t_2 = \cdots = t_{k-1} \in \mathbb{C}$. The affine type C Hecke algebra \mathcal{H}_k is the quotient of $\mathbb{C}\mathcal{B}_k$ by the relations $(T_i - t_i^{1/2})(T_i + t_i^{-1/2}) = 0.$

(3) Set

so that $e_j^2=z_je_j$ (for good z_j). The two-boundary Temperley-Lieb algebra is the quotient of \mathcal{H}_k by the relations $e_i e_{i+1} e_i = e_i$ for $i = 1, \dots, k-1$.

Theorem (D.-Ram)

- (1) Let $U=U_q\mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g} . Let M, N, and V be finite-dimensional modules. The two-boundary braid group B_k acts on $M\otimes (V)^{\otimes k}\otimes N$ and this action commutes with the action of U.
- (2) If $\mathfrak{g} = \mathfrak{gl}_n$, then (for correct choices of M, N, and V), the affine Hecke algebra of type C, H_k , acts on $M \otimes (V)^{\otimes k} \otimes N$ and this action commutes with the action of U.
- (3) If $\mathfrak{g} = \mathfrak{gl}_2$, then the action of the two-boundary Temperley-Lieb algebra factors through the T.L. quotient of H_k .

Some results:

- (a) A diagrammatic intuition for H_k .
- (b) A combinatorial classification and construction of irreducible representations of H_k (type C with distinct parameters) via central characters and generalizations of Young tableaux.
- (c) A classification of the representations of TL_k in [dGN08] via central characters, including answers to open questions and conjectures regarding their irreducibility and isomorphism classes.

Move both poles to the left

Jucys-Murphy elements:

$$Y_i = \underbrace{\begin{array}{c} i \\ i \end{array}}_{i}$$

- Pairwise commute
- $Z(\mathcal{H}_k)$ is (type-C) symmetric Laurent polynomials in Z_i 's
- Central characters indexed by $\mathbf{c} \in \mathbb{C}^k$ (modulo signed permutations)

Back to tensor space operators properties

The eigenvalues of the T_i 's must coincide with the eigenvalues of the corresponding R-matrices, which can be computed combinatorially.

$$0 = (T_0 - t_0)(T_0 - t_0^{-1}) = (T_k - t_k)(T_k - t_k^{-1}) = (T_i - t^{1/2})(T_i + t^{-1/2})$$

$$T_0 = \bigcup_{i=1}^{n} \propto \check{R}_{VM}\check{R}_{MV} \qquad T_k = \bigcup_{i=1}^{n} \propto \check{R}_{NV}\check{R}_{VN} \qquad T_i = \bigcup_{i=1}^{n} \propto \check{R}_{VV}$$

$$0 \qquad M \qquad 0 \qquad N \qquad 0 \qquad V$$

$$-b_0 \qquad 1 \qquad 0 \qquad V$$

$$t_0 = -q^{2(a_0+b_0)} \qquad t_k = -q^{2(a_k+b_k)} \qquad t = q^2$$

Exploring $M \otimes N \otimes L(\square)^{\otimes k}$

Products of rectangles:

$$L((a_0^{b_0})) \otimes L((a_k{}^{b_k})) = \bigoplus_{\lambda \in \Lambda} L(\lambda) \qquad \text{ (multiplicity one!)}$$

where $\boldsymbol{\Lambda}$ is the following set of partitions. . .

Exploring $M \otimes N \otimes L(\square)^{\otimes k}$

- (*) H_k representations in tensor space are labeled by certain partitions λ .
- (*) Basis labeled by tableaux from *some* partition μ in $(a^c) \otimes (b^d)$ to λ .
- (*) Calibrated (Y_i 's are diagonalized): Y_i acts by t to the shifted diagonal number of box_i . (Think: signed permutations.)