Combinatorics and representation theory of diagram algebras.

Zajj Daugherty
The City College of New York \& The CUNY Graduate Center

February 3, 2020
Slides available at https://zdaugherty.ccnysites.cuny.edu/research/

Combinatorial representation theory

Representation theory: Given an algebra $A \ldots$

- What are the A-modules/representations?
(Actions $A \subset V$ and homomorphisms $\varphi: A \rightarrow \operatorname{End}(V)$)
- What are the simple/indecomposable A-modules/reps?
- What are their dimensions?
- What is the action of the center of A ?
- How can I combine modules to make new ones, and what are they in terms of the simple modules?

In combinatorial representation theory, we use combinatorial objects to index (construct a bijection to) modules and representations, and to encode information about them.

Motivating example: Schur-Weyl Duality

The symmetric group S_{k} (permutations) as diagrams:

(with multiplication given by concatenation)

Motivating example: Schur-Weyl Duality
$\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

S_{k} also acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ by place permutation.

These actions commute!

Motivating example: Schur-Weyl Duality
Schur (1901): S_{k} and GL_{n} have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$.
Even better,
$\underbrace{\operatorname{End}_{\mathrm{GL}_{n}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)}_{\begin{array}{c}\text { (all linear maps that } \\ \text { commute with GL } \mathrm{GL}_{n} \text {) }\end{array}}=\underbrace{\pi\left(\mathbb{C} S_{k}\right)}_{\begin{array}{c}\text { (img of } S_{k} \\ \text { action) }\end{array}}$ and $\operatorname{End}_{S_{k}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\underbrace{\rho\left(\mathbb{C G L}_{n}\right)}_{\begin{array}{c}\text { (img of GL } \\ \text { action) }\end{array}}$.
Powerful consequence:
The double-centralizer relationship produces

$$
\left(\mathbb{C}^{n}\right)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^{\lambda} \otimes S^{\lambda} \quad \text { as a } \mathrm{GL}_{n} \text { - } S_{k} \text { bimodule }
$$ where $\begin{array}{clll}G^{\lambda} & \text { are distinct irreducible } & \mathrm{GL}_{n} \text {-modules } \\ S^{\lambda} & \text { are distinct irreducible } & S_{k} \text {-modules }\end{array}$ For example,

$$
\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}=\left(G^{\square \square} \otimes S^{\square \square}\right) \oplus\left(G^{\square} \otimes S^{\square}\right) \oplus\left(G^{\square} \otimes S^{\square}\right)
$$

Representation theory of $V^{\otimes k}$
$V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \cdots$

Brauer (1937)
Orthogonal and symplectic groups (and Lie algebras) acting on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally centralize the Brauer algebra:

$$
\begin{gathered}
\delta_{b, c} \sum_{i=1}^{n} v_{i} \otimes v_{i} \otimes v_{a} \otimes v_{d} \otimes v_{d} \\
\text { with } \longrightarrow=n
\end{gathered}
$$

Temperley-Lieb (1971)
GL_{2} and SL_{2} (and $\mathfrak{g l}_{2}$ and $\mathfrak{s l}_{2}$) acting on $\left(\mathbb{C}^{2}\right)^{\otimes k}$ diagonally centralize the Temperley-Lieb algebra:

Diagrams encode maps $V^{\otimes k} \rightarrow V^{\otimes k}$ that commute with the action of some classical algebra.

More centralizer algebras

Representation theory of $V^{\otimes k}$, orthogonal and symplectic:

$$
V=\mathbb{C}=L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \cdots
$$

More diagram algebras: braids

The braid group:

(with multiplication given by concatenation)

More diagram algebras: braids

The affine (one-pole) braid group:

(with multiplication given by concatenation)

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.
$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

$$
\check{\mathcal{R}}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that (1) satisfies braid relations, and
(2) commutes with the action on $V \otimes W$
for any \mathcal{U}-module V.

The two-pole braid group shares a commuting action with \mathcal{U} on $M \otimes V^{\otimes k} \otimes N$:

Around the pole:

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl (BMW) algebras, built from Brauer algebras and their Jucys-Murphy elements.
Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.
D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

D.-González-Schneider-Sutton:

Constructing 2-boundary analogues
(in progress.).

Balagovic et al.:

Signed versions and representations of periplectic Lie superalgebras.

Example: "Admissibility conditions"

Affine BMW algebra

Closed loops:

Degenerate affine BMW algebra

Closed loops:

The associated parameters of the algebra, e.g.

aren't entirely free.
Important insight: As operators on tensor space $M \otimes V \otimes V$,
"Higher Casimir invariants"
(orthog. \& sympl.)

Type A
(gen. \& sp. linear)
Affine Hecke of type C (+twists)

Small Type A
$\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)$

Two boundary algebras (type A)
Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra $T L_{k}$:

de Gier, Nichols (2008): Explored representation theory of $T L_{k}$ using diagrams and established a connection to the affine Hecke algebras of type A and C.
D. (2010): The centralizer of $\mathfrak{g l}_{n}$ acting on tensor space $M \otimes V^{\otimes k} \otimes N$ displays type Combinatorics for good choices of M, N, and V.

The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

$$
T_{k}=\overbrace{\cdot}^{9}, \quad T_{0}=\underbrace{9}_{U} \text { and } T_{i}=\int_{i+1}^{i+1} \quad \text { for } 1 \leqslant i \leqslant k-1
$$

subject to relations

i.e.

and, similarly, $T_{k-1} T_{k} T_{k-1} T_{k}=T_{k} T_{k-1} T_{k} T_{k-1}$.
(1) The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by
subject to relations $\stackrel{T_{0}}{\mathrm{O}}=\mathrm{O}-\mathrm{O}^{T_{1}}----\mathrm{O}-\mathrm{O}=\mathrm{O}-$
(2) Fix constants $t_{0}, t_{k}, t \in \mathbb{C}$.

The affine type C Hecke algebra \mathcal{H}_{k} is the quotient of $\mathbb{C} \mathcal{B}_{k}$ by the relations

$$
\begin{aligned}
& \left(T_{0}-t_{0}^{1 / 2}\right)\left(T_{0}+t_{0}^{-1 / 2}\right)=0, \quad\left(T_{k}-t_{k}^{1 / 2}\right)\left(T_{k}+t_{k}^{-1 / 2}\right)=0 \\
& \text { and } \quad\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)=0 \quad \text { for } i=1, \ldots, k-1 .
\end{aligned}
$$

(1) The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by
subject to relations $\stackrel{T_{0}}{\mathrm{O}}=\mathrm{O}_{1}^{T_{1}}-\mathrm{O}^{T_{2}}-\mathrm{-}---\mathrm{O}-\mathrm{O}=\mathrm{O}$.
(2) Fix constants $t_{0}, t_{k}, t=t_{1}=t_{2}=\cdots=t_{k-1} \in \mathbb{C}$.

The affine type C Hecke algebra \mathcal{H}_{k} is the quotient of $\mathbb{C} \mathcal{B}_{k}$ by the relations $\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0$.
(3) Set

$$
\begin{aligned}
& \left(e_{0}=t_{0}^{1 / 2}-T_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(e_{k}=t_{k}^{1 / 2}-T_{k}\right) \\
& \mathfrak{C}=t^{1 / 2} \text { ! ! - } \\
& \left(e_{i}=t^{1 / 2}-T_{i}\right)
\end{aligned}
$$

so that $e_{j}^{2}=z_{j} e_{j}\left(\right.$ for good $\left.z_{j}\right)$.
The two-boundary Temperley-Lieb algebra is the quotient of \mathcal{H}_{k} by the relations $e_{i} e_{i \pm 1} e_{i}=e_{i}$ for $i=1, \ldots, k-1$.

Theorem (D.-Ram)
(1) Let $U=U_{q} \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g}. Let M, N, and V be finite-dimensional modules.
The two-boundary braid group B_{k} acts on $M \otimes(V)^{\otimes k} \otimes N$ and this action commutes with the action of U.
(2) If $\mathfrak{g}=\mathfrak{g l}_{n}$, then (for correct choices of M, N, and V), the affine Hecke algebra of type C, H_{k}, acts on $M \otimes(V)^{\otimes k} \otimes N$ and this action commutes with the action of U.
(3) If $\mathfrak{g}=\mathfrak{g l}_{2}$, then the action of the two-boundary Temperley-Lieb algebra factors through the T.L. quotient of H_{k}.

Some results:
(a) A diagrammatic intuition for H_{k}.
(b) A combinatorial classification and construction of irreducible representations of H_{k} (type C with distinct parameters) via central characters and generalizations of Young tableaux.
(c) A classification of the representations of $T L_{k}$ in [dGN08] via central characters, including answers to open questions and conjectures regarding their irreducibility and isomorphism classes.

Move both poles to the left

Jucys-Murphy elements:

- Pairwise commute
- $Z\left(\mathcal{H}_{k}\right)$ is (type-C) symmetric Laurent polynomials in Z_{i} 's
- Central characters indexed by $\mathbf{c} \in \mathbb{C}^{k}$ (modulo signed permutations)

Back to tensor space operators properties

The eigenvalues of the T_{i} 's must coincide with the eigenvalues of the corresponding R-matrices, which can be computed combinatorially.

$$
0=\left(T_{0}-t_{0}\right)\left(T_{0}-t_{0}^{-1}\right)=\left(T_{k}-t_{k}\right)\left(T_{k}-t_{k}^{-1}\right)=\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)
$$

$$
T_{0}=\int_{0 \cdot}^{9 \rightarrow} \propto \check{R}_{V M} \check{R}_{M V} \quad T_{k}=\overbrace{\cdot}^{M} \propto \check{R}_{N V} \check{R}_{V N} \quad T_{i}=\overbrace{i}^{i} \int_{i+1}^{i+1} \propto \check{R}_{V V}
$$

$\square_{-1}^{0 .} \quad 1$
\square

$$
t_{0}=-q^{2\left(a_{0}+b_{0}\right)}
$$

$$
t_{k}=-q^{2\left(a_{k}+b_{k}\right)}
$$

$$
t=q^{2}
$$

Exploring $M \otimes N \otimes L(\square)^{\otimes k}$

Products of rectangles:

$$
L\left(\left(a_{0}^{b_{0}}\right)\right) \otimes L\left(\left(a_{k}^{b_{k}}\right)\right)=\bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text { (multiplicity one!) }
$$

where Λ is the following set of partitions...

Exploring $M \otimes N \otimes L(\square)^{\otimes k}$

$L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$
Shift by $\frac{1}{2}\left(a_{0}-b_{0}+a_{k}-b_{k}\right)$

$$
\begin{array}{llc}
Y_{1} & \mapsto & t^{5.5} \\
Y_{2} & \mapsto & t^{3.5} \\
Y_{3} & \mapsto t^{-4.5} \\
Y_{4} & \mapsto t^{-5.5} \\
Y_{5} & \mapsto t^{-2.5}
\end{array}
$$

$Y_{1} \mapsto t^{-5.5}$
$Y_{2} \mapsto t^{2.5}$
$Y_{3} \mapsto t^{4.5}$
$Y_{4} \mapsto t^{3.5}$
$Y_{5} \mapsto t^{5.5}$

$\begin{array}{ll}Y_{1} & \mapsto t^{5.5} \\ Y_{2} & \mapsto t^{3.5} \\ Y_{3} & \mapsto t^{-4.5} \\ Y_{4} & \mapsto t^{-5.5} \\ Y_{5} & \mapsto t^{-2.5}\end{array}$
(*) H_{k} representations in tensor space are labeled by certain partitions λ.
(*) Basis labeled by tableaux from some partition μ in $\left(a^{c}\right) \otimes\left(b^{d}\right)$ to λ.
(*) Calibrated (Y_{i} 's are diagonalized): Y_{i} acts by t to the shifted diagonal number of box $_{i}$.
(Think: signed permutations.)

