Representation theory and combinatorics of braid algebras and their quotients.

Zajj Daugherty

The City College of New York & The CUNY Graduate Center

January 14, 2020

Slides available at https://zdaugherty.ccnysites.cuny.edu/research/

The symmetric group S_k (permutations) as diagrams:

The symmetric group S_k (permutations) as diagrams:

(with multiplication given by concatenation)

The symmetric group S_k (permutations) as diagrams:

(with multiplication given by concatenation)

The symmetric group S_k (permutations) as diagrams:

(with multiplication given by concatenation)

 $\operatorname{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

 $g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$

 $\operatorname{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

$$g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$$

 S_k also acts on $(\mathbb{C}^n)^{\otimes k}$ by place permutation.

 $\operatorname{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

$$g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$$

 S_k also acts on $(\mathbb{C}^n)^{\otimes k}$ by place permutation.

These actions commute.

Schur (1901): S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$. Even better,

$$\underbrace{\operatorname{End}_{\operatorname{GL}_n}\left((\mathbb{C}^n)^{\otimes k}\right)}_{(\text{all linear maps that commute with }\operatorname{GL}_n)} = \underbrace{\pi(\mathbb{C}S_k)}_{(\operatorname{img of }S_k} \quad \text{and} \quad \operatorname{End}_{S_k}\left((\mathbb{C}^n)^{\otimes k}\right) = \underbrace{\rho(\mathbb{C}\operatorname{GL}_n)}_{(\operatorname{img of }\operatorname{GL}_n}$$

Schur (1901): S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$. Even better.

$$\underbrace{\operatorname{End}_{\operatorname{GL}_n}\left((\mathbb{C}^n)^{\otimes k}\right)}_{(\text{all linear maps that commute with }\operatorname{GL}_n)} = \underbrace{\pi(\mathbb{C}S_k)}_{(\operatorname{img of }S_k} \quad \text{and} \quad \operatorname{End}_{S_k}\left((\mathbb{C}^n)^{\otimes k}\right) = \underbrace{\rho(\mathbb{C}\operatorname{GL}_n)}_{(\operatorname{img of }\operatorname{GL}_n}$$

Powerful consequence: a duality between representations The double-centralizer relationship produces

$$(\mathbb{C}^n)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^\lambda \otimes S^\lambda$$
 as a GL_n - S_k bimodule,

 GL_n -modules

where $\begin{array}{c} G^{\lambda} & \mbox{are distinct irreducible} & \mbox{GL}_n\mbox{-module} \\ S^{\lambda} & \mbox{are distinct irreducible} & S_k\mbox{-modules} \end{array}$

Schur (1901): S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$. Even better,

$$\underbrace{\operatorname{End}_{\operatorname{GL}_n}\left((\mathbb{C}^n)^{\otimes k}\right)}_{(\text{all linear maps that commute with }\operatorname{GL}_n)} = \underbrace{\pi(\mathbb{C}S_k)}_{(\operatorname{img of }S_k} \quad \text{and} \quad \operatorname{End}_{S_k}\left((\mathbb{C}^n)^{\otimes k}\right) = \underbrace{\rho(\mathbb{C}\operatorname{GL}_n)}_{(\operatorname{img of }\operatorname{GL}_n}$$

Powerful consequence: a duality between representations The double-centralizer relationship produces

$$(\mathbb{C}^n)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^\lambda \otimes S^\lambda$$
 as a GL_n - S_k bimodule,

where $egin{array}{cc} G^\lambda & \mbox{are distinct irreducible} & \mbox{GL}_n\mbox{-modules} \\ S^\lambda & \mbox{are distinct irreducible} & S_k\mbox{-modules} \end{array}$ For example,

$$\mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n = \left(G^{\square\square} \otimes S^{\square\square} \right) \oplus \left(G^{\square} \otimes S^{\square} \right) \oplus \left(G^{\square} \otimes S^{\square} \right)$$

More centralizer algebras

```
Brauer (1937)
Orthogonal and symplectic groups
acting on (\mathbb{C}^n)^{\otimes k} diagonally
centralize the Brauer algebra:
```


(Diagrams encoding maps $V^{\otimes k} \to V^{\otimes k}$ that commute with the action of some classical algebra.)

More centralizer algebras

Brauer (1937) Orthogonal and symplectic groups acting on $(\mathbb{C}^n)^{\otimes k}$ diagonally centralize the **Brauer algebra**: Temperley-Lieb (1971) GL₂ and SL₂ acting on $(\mathbb{C}^2)^{\otimes k}$ diagonally centralize the **Temperley-Lieb algebra**:

(Diagrams encoding maps $V^{\otimes k} \to V^{\otimes k}$ that commute with the action of some classical algebra.)

More centralizer algebras

Brauer (1937) Orthogonal and symplectic groups (and Lie algebras) acting on $(\mathbb{C}^n)^{\otimes k}$ diagonally centralize the **Brauer algebra**:

Temperley-Lieb (1971) GL_2 and SL_2 (and \mathfrak{gl}_2 and \mathfrak{sl}_2) acting on $(\mathbb{C}^2)^{\otimes k}$ diagonally centralize the **Temperley-Lieb algebra**:

(Diagrams encoding maps $V^{\otimes k} \to V^{\otimes k}$ that commute with the action of some classical algebra.)

Let \mathfrak{g} be a Lie algebra, and fix $q \in \mathbb{C}$. One deformation of \mathfrak{g} is the Drinfel'd-Jimbo quantum group $\mathcal{U} = \mathcal{U}_q \mathfrak{g}$.

Let \mathfrak{g} be a Lie algebra, and fix $q \in \mathbb{C}$. One deformation of \mathfrak{g} is the Drinfel'd-Jimbo quantum group $\mathcal{U} = \mathcal{U}_q \mathfrak{g}$. $\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R} = \sum_{\mathcal{R}} R_1 \otimes R_2$ that yields a map

$$\check{\mathcal{R}}_{VW} \colon V \otimes W \longrightarrow W \otimes V$$

that (1) satisfies braid relations, and (2) commutes with the action on $V^{\otimes k}$ for any \mathcal{U} -modules V, W.

Let \mathfrak{g} be a Lie algebra, and fix $q \in \mathbb{C}$. One deformation of \mathfrak{g} is the Drinfel'd-Jimbo quantum group $\mathcal{U} = \mathcal{U}_q \mathfrak{g}$. $\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R} = \sum_{\mathcal{R}} R_1 \otimes R_2$ that yields a map

$$\check{\mathcal{R}}_{VW} \colon V \otimes W \longrightarrow W \otimes V$$

that (1) satisfies braid relations, and (2) commutes with the action on $V^{\otimes k}$ for any \mathcal{U} -modules V, W.

The braid group shares a commuting action with ${\mathcal U}$ on $V^{\otimes k}$:

Let \mathfrak{g} be a Lie algebra, and fix $q \in \mathbb{C}$. One deformation of \mathfrak{g} is the Drinfel'd-Jimbo quantum group $\mathcal{U} = \mathcal{U}_q \mathfrak{g}$. $\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R} = \sum_{\mathcal{R}} R_1 \otimes R_2$ that yields a map

$$\check{\mathcal{R}}_{VW} \colon V \otimes W \longrightarrow W \otimes V$$

that (1) satisfies braid relations, and (2) commutes with the action on $V^{\otimes k}$ for any \mathcal{U} -modules V, W.

The one-pole/affine braid group shares a commuting action with \mathcal{U} on $M \otimes V^{\otimes k}$:

Let \mathfrak{g} be a Lie algebra, and fix $q \in \mathbb{C}$. One deformation of \mathfrak{g} is the Drinfel'd-Jimbo quantum group $\mathcal{U} = \mathcal{U}_q \mathfrak{g}$. $\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R} = \sum_{\mathcal{R}} R_1 \otimes R_2$ that yields a map

$$\check{\mathcal{R}}_{VW} \colon V \otimes W \longrightarrow W \otimes V$$

that (1) satisfies braid relations, and (2) commutes with the action on $V^{\otimes k}$ for any \mathcal{U} -modules V, W.

The two-pole braid group shares a commuting action with \mathcal{U} on $M \otimes V^{\otimes k} \otimes N$:

Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.

Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.

D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

Example: "Admissibility conditions"

Example: "Admissibility conditions"

Closed loops:

The associated parameters of the algebra, e.g.

aren't entirely free (more so in "cyclotomic quotients").

Example: "Admissibility conditions"

Closed loops:

The associated parameters of the algebra, e.g.

$$\bigcirc = z_0 \frown, \qquad \bigcirc = z_1 \frown, \qquad \bigcirc = z_2 \frown, \quad \cdots$$

aren't entirely free (more so in "cyclotomic quotients"). Important insight: As operators on tensor space $M \otimes V \otimes V$,

$$\overbrace{\stackrel{l}{\iota}}{\stackrel{l}{\iota}} \in Z(U\mathfrak{g}) \otimes \mathbb{C} \otimes \mathbb{C} \qquad \text{and} \qquad \overbrace{\stackrel{l}{\iota}}{\stackrel{\mathfrak{g}}{\downarrow}}{\stackrel{\mathfrak{g}}{\downarrow}} \in Z(U_q\mathfrak{g}) \otimes \mathbb{C} \otimes \mathbb{C}.$$

"Higher Casimir invariants"

Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.

D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.

D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

D.-González-Schneider-Sutton:

Constructing 2-boundary analogues (in progress.).

Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.

D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

D.-González-Schneider-Sutton:

Constructing 2-boundary analogues (in progress.).

Balagovic et al.:

Signed versions and representations of periplectic Lie superalgebras.

	niversal	
0	inversu:	

Type B, C, D

(orthog. & sympl.) Two-pole BMW Type A

(gen. & sp. linear) Affine Hecke

of type C (+twists)

Small Type A

 $(\operatorname{GL}_2 \& \operatorname{SL}_2)$

 $M \otimes \left(V^{\otimes k} \right) \otimes N$

Qu grp

Two-pole braids

Two boundary algebras (type A)

Qu grp

Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra TL_k :

Two boundary algebras (type A)

Qu grp

Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra TL_k :

de Gier, Nichols (2008): Explored representation theory of TL_k using diagrams and established a connection to the affine Hecke algebras of type A and C.

Two boundary algebras (type A)

Qu grp

Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra TL_k :

de Gier, Nichols (2008): Explored representation theory of TL_k using diagrams and established a connection to the affine Hecke algebras of type A and C.

D. (2010): The centralizer of \mathfrak{gl}_n acting on tensor space $M \otimes V^{\otimes k} \otimes N$ displays type C combinatorics for good choices of M, N, and V.

$$T_k = \bigwedge^{\cap}, \quad T_0 = \bigvee^{\circ}$$
 and $T_i = \bigvee^{i \quad i+1}_{i \quad i+1}$ for $1 \le i \le k-1$,

$$T_k = \bigwedge^{n}, \quad T_0 = \bigwedge^{i} \quad \text{and} \quad T_i = \bigwedge^{i}_{i \quad i+1} \quad \text{for } 1 \leq i \leq k-1,$$

subject to relations

$$T_k = \bigwedge^{n}, \quad T_0 = \bigwedge^{i} \quad \text{and} \quad T_i = \bigwedge^{i}_{i \quad i+1} \quad \text{for } 1 \leq i \leq k-1,$$

subject to relations

$$T_k = \bigwedge^{n}, \quad T_0 = \bigwedge^{i} \quad \text{and} \quad T_i = \bigwedge^{i}_{i \quad i+1} \quad \text{for } 1 \leq i \leq k-1,$$

subject to relations

and, similarly, $T_{k-1}T_kT_{k-1}T_k = T_kT_{k-1}T_kT_{k-1}$.

$$T_k = \bigwedge_{i=1}^{n}, \quad T_0 = \bigcup_{i=1}^{n} \quad \text{and} \quad T_i = \bigvee_{i=i+1}^{i=i+1} \quad \text{for } 1 \leq i \leq k-1,$$

subject to relations

i.e.

and, similarly, $T_{k-1}T_kT_{k-1}T_k = T_kT_{k-1}T_kT_{k-1}$.

$$T_k = \bigcup_{i=1}^{n}, \quad T_0 = \bigcup_{i=1}^{n} \text{ and } T_i = \bigvee_{i=i+1}^{i=i+1} \text{ for } 1 \le i \le k-1,$$

$$T_k = \bigwedge^{\cap}, \quad T_0 = \bigvee^{\circ}, \quad and \quad T_i = \bigvee^{i \quad i+1}_{i \quad i+1} \quad \text{for } 1 \le i \le k-1,$$

subject to relations $\overbrace{O}^{T_0} \overbrace{-}^{T_1} \overbrace{-}^{T_2} \overbrace{-}^{T_{k-2}} \overbrace{-}^{T_{k-1}} \overbrace{-}^{T_k}$.

(2) Fix constants $t_0, t_k, t \in \mathbb{C}$. The affine type C Hecke algebra \mathcal{H}_k is the quotient of $\mathbb{C}\mathcal{B}_k$ by the relations

$$\begin{split} (T_0 - t_0^{1/2})(T_0 + t_0^{-1/2}) &= 0, \quad (T_k - t_k^{1/2})(T_k + t_k^{-1/2}) = 0 \\ \text{and} \quad (T_i - t^{1/2})(T_i + t^{-1/2}) = 0 \quad \text{for } i = 1, \dots, k-1. \end{split}$$

$$T_k = \overset{\text{fl}}{\swarrow}, \quad T_0 = \overset{\text{fl}}{\swarrow} \text{ and } T_i = \overset{i \quad i+1}{\underset{i \quad i+1}{\checkmark}} \quad \text{for } 1 \leq i \leq k-1,$$

(2) Fix constants $t_0, t_k, t = t_1 = t_2 = \cdots = t_{k-1} \in \mathbb{C}$. The affine type C Hecke algebra \mathcal{H}_k is the quotient of $\mathbb{C}\mathcal{B}_k$ by the relations $(T_i - t_i^{1/2})(T_i + t_i^{-1/2}) = 0$.

$$T_k = \bigwedge^{\mathsf{fl}}, \quad T_0 = \bigcup^{\mathsf{fl}} \quad \text{and} \quad T_i = \bigvee^{i \quad i+1}_{i \quad i+1} \qquad \text{for } 1 \leq i \leq k-1,$$

(2) Fix constants $t_0, t_k, t = t_1 = t_2 = \cdots = t_{k-1} \in \mathbb{C}$. The affine type C Hecke algebra \mathcal{H}_k is the quotient of $\mathbb{C}\mathcal{B}_k$ by the relations $(T_i - t_i^{1/2})(T_i + t_i^{-1/2}) = 0$.

(3) Set

$$\begin{array}{c} & = t_0^{1/2} \\ & = t_0^{1/2} \\ & = t_k^{1/2} \\ & = t_$$

so that $e_j^2 = z_j e_j$ (for good z_j).

$$T_k = \overset{\text{fl}}{\swarrow}, \quad T_0 = \overset{\text{fl}}{\swarrow} \text{ and } \quad T_i = \overset{i \quad i+1}{\underset{i \quad i+1}{\checkmark}} \quad \text{for } 1 \leq i \leq k-1,$$

(2) Fix constants $t_0, t_k, t = t_1 = t_2 = \cdots = t_{k-1} \in \mathbb{C}$. The affine type C Hecke algebra \mathcal{H}_k is the quotient of $\mathbb{C}\mathcal{B}_k$ by the relations $(T_i - t_i^{1/2})(T_i + t_i^{-1/2}) = 0$.

(3) Set

so that $e_j^2 = z_j e_j$ (for good z_j). The two-boundary Temperley-Lieb algebra is the quotient of \mathcal{H}_k by the

relations $e_i e_{i+1} e_i = e_i$ for $i = 1, \ldots, k-1$.

$$T_k = \bigcup_{i=1}^{n}, \quad T_0 = \bigcup_{i=1}^{n} \text{ and } T_i = \sum_{i=i+1}^{i=i+1} \text{ for } 1 \leq i \leq k-1.$$

(2) Fix constants $t_0, t_k, t = t_1 = t_2 = \cdots = t_{k-1} \in \mathbb{C}$. The affine type C Hecke algebra \mathcal{H}_k is the quotient of \mathbb{CB}_k by the relations $(T_i - t_i^{1/2})(T_i + t_i^{-1/2}) = 0$.

(3) Set

$$= t_0^{1/2} \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad = t_k^{1/2} \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{and} \quad = t^{1/2} \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

so that $e_j^2 = z_j e_j$. The two-boundary Temperley-Lieb algebra is the quotient of \mathcal{H}_k by the relations $e_i e_{i\pm 1} e_i = e_i$ for $i = 1, \dots, k-1$.

Theorem (D.-Ram)

- (1) Let $U = U_q \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g} . Let M, N, and V be finite-dimensional modules. The two-boundary braid group B_k acts on $M \otimes (V)^{\otimes k} \otimes N$ and this action commutes with the action of U.
- (2) If $\mathfrak{g} = \mathfrak{gl}_n$, then (for correct choices of M, N, and V), the affine Hecke algebra of type C, H_k , acts on $M \otimes (V)^{\otimes k} \otimes N$ and this action commutes with the action of U.
- (3) If $\mathfrak{g} = \mathfrak{gl}_2$, then the action of the two-boundary Temperley-Lieb algebra factors through the T.L. quotient of H_k .

Theorem (D.-Ram)

- (1) Let $U = U_q \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g} . Let M, N, and V be finite-dimensional modules. The two-boundary braid group B_k acts on $M \otimes (V)^{\otimes k} \otimes N$ and this action commutes with the action of U.
- (2) If $\mathfrak{g} = \mathfrak{gl}_n$, then (for correct choices of M, N, and V), the affine Hecke algebra of type C, H_k , acts on $M \otimes (V)^{\otimes k} \otimes N$ and this action commutes with the action of U.
- (3) If $\mathfrak{g} = \mathfrak{gl}_2$, then the action of the two-boundary Temperley-Lieb algebra factors through the T.L. quotient of H_k .

Some results:

- (a) A diagrammatic intuition for H_k .
- (b) A combinatorial classification and construction of irreducible representations of H_k (type C with distinct parameters) via central characters and generalizations of Young tableaux.
- (c) A classification of the representations of TL_k in [dGN08] via central characters, including answers to open questions and conjectures regarding their irreducibility and isomorphism classes.

