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GLn(C) actson C" @ C" @ - - - @ C* = (C")®* diagonally.
- (M RV Qug) =gu @ gua @ - -+ ® .
Sk also acts on (C”)®k by place permutation.

V2 @ V4 ® V1 @ Vs ® U3

V1 Q@ vy @ vy Q vy X vy

These actions commute.

gu2 ¥ g4 ® gu1 & gUs X gus gu2 ¥ g4 Q gu1 & gUs X gus
VS.

gu1 @ gug ® guz @ gus X gus V1 ® v @ vy ® vy ® vy



Schur-Weyl Duality
Schur (1901): S; and GL,, have commuting actions on (C")®*.
Even better,

Ender, (((C”)®k>: 7(CSy)  and Endg, (((C”)®k): p(CGL,).

N—— N——
(all linear maps that (img of Sk (img of GLy,
commute with GL,,) action) action)




Schur-Weyl Duality
Schur (1901): Sk and GL,, have commuting actions on (C")

Even better,

Ender, ((cn)‘@k) — 7(CS,) and Endg, ((cn)®k) p(CGL,).
N—_—— N—_——

(all linear maps that (img of Sk (img of GLy,

commute with GL,,) action) action)

Powerful consequence: a duality between representations

The double-centralizer relationship produces

(C* =P G*@S*  asa GL,-Sy bimodule,
ARE

where G* are distinct irreducible  GL,,-modules
S*  are distinct irreducible  Si-modules



Schur-Weyl Duality
Schur (1901): S, and GL,, have commuting actions on (C")®*
Even better,

Ender, (((C”)®k>: 7(CSy)  and Endg, ((C”)®k) p(CGL,).
——

——
(all linear maps that (img of Sk (img of GLy,
commute with GL,,) action) action)

Powerful consequence: a duality between representations

The double-centralizer relationship produces

(C* =P G*@S*  asa GL,-Sy bimodule,
ARE

G* are distinct irreducible  GL,,-modules
S*  are distinct irreducible  Si-modules

For example,

C”@C"@(C":(Gm@s ) (GE}H@SEP)@(G ® S

where
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More centralizer algebras

Temperley-Lieb (1971)

GL2 and SLs (and gl, and sl3) act-
ing on (C2)®* diagonally centralize
the Temperley-Lieb algebra:

Brauer (1937)

Orthogonal and symplectic groups
(and Lie algebras) acting on
(C™)®* diagonally centralize

the Brauer algebra:

n

Shre D 05 ® V; @ Vg @ Vg @ Vg
i=1 &P I

« e
Va ® Vb @ Ve @ Vd &@ Ve

with O: n

2
de,d Z'Uu, RV ® Vi @ Up @ Ve
=
o« e
Vg ® Vb Q Ve ® Vd Q Ve

withC O =2

(Diagrams encoding maps VE* — V® that commute with the

action of some classical algebra.)
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Let g be a Lie algebra, and fix ¢ € C.
One deformation of g is the Drinfel'd-Jimbo quantum group U = U,g.
U @ U has an invertible element R = )", Ry ® R that yields a map
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ﬁvw:V@W—}W(@V &

Vew

that (1) satisfies braid relations, and
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Quantum groups and braids

Let g be a Lie algebra, and fix ¢ € C.
One deformation of g is the Drinfel'd-Jimbo quantum group U = U,g.
U @ U has an invertible element R = )", Ry ® R that yields a map

WeV
ﬁvw:V@W—}W(@V &

Vew

that (1) satisfies braid relations, and
(2) commutes with the action on V®*
for any U-modules V, W

The two-pole braid group shares a commuting action
with U on M @ V& @ N:

MV @ VoV @V @ VoN
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elements.
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affine BMW algebras. [OR04] gave the action on M ® V®* commuting
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Example: “Admissibility conditions”

Affine BMW algebra Degenerate affine BMW algebra

X S

Closed loops: Closed loops:

E @ D@’ =25

The associated parameters of the algebra, e.g.

) (O

o_-»
~* o_» o _» «_»
O:ZO(-\.; O:zl./—\.a =22 o~
e — =

aren't entirely free (more so in “cyclotomic quotients”).

Important insight: As operators on tensor space M @ V ® V,
T T a2
fSGZ(Ug)Q{)(C@(C and fu/ €Z(U)®@CoC.

“Higher Casimir invariants”
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(BMW) algebras, built from Brauer algebras and their Jucys-Murphy

elements.

Haring-Oldenburg (98) and Orellana-Ram (04): Introduced the
affine BMW algebras. [OR04] gave the action on M ® V&* commuting

with the action of the quantum groups of types B, C, D.

D.-Ram-Virk: Used these centralizer relationships to study these two
algebras simultaneously. Results include computing the centers, handling
the parameters associated to the algebras, computing powerful
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Balagovic et al.:
Signed versions and representations of
periplectic Lie superalgebras.

D.-Gonzalez-Schneider-Sutton:
Constructing 2-boundary analogues
(in progress.).
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Two boundary algebras (type A)
Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model

with additional integrable boundary terms, introduced the two-boundary
Temperley-Lieb algebra T'Ly:

non-

crossing diagrams
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Two boundary algebras (type A)

Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model
with additional integrable boundary terms, introduced the two-boundary
Temperley-Lieb algebra T'Ly:

non-crossing diagrams

e__ o
2
o
o
b
c
[
H
« e e
L |
‘ k dots ‘

de Gier, Nichols (2008): Explored representation theory of T'Lj, using
diagrams and established a connection to the affine Hecke algebras of
type A and C.

N (ypa)@m
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Two boundary algebras (type A)

Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model
with additional integrable boundary terms, introduced the two-boundary
Temperley-Lieb algebra T'Ly:

non-crossing diagrams

e__ o
3
o
o
H*
c
[
H
o/o/:\o\o
| ]
r 1
k dots

de Gier, Nichols (2008): Explored representation theory of T'Lj, using
diagrams and established a connection to the affine Hecke algebras of
type A and C.

D. (2010): The centralizer of gl,, acting on tensor space M ® V¥* @ N
displays type C combinatorics for good choices of M, N, and V.

N (ypa)@m
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(1) The two-boundary (two-pole) braid group By is generated by

7 i+l
A B4 Vs .
Tk:m, TO:D\‘ and E:(\ﬂ for1<i<k-1,
TO T1 T2 Tk72 kal Tk,

subject to relations O—0—O----- -O—0O—

(2) Fix constants tg, ty,t € C.
The affine type C Hecke algebra Hy, is the quotient of CBj by the
relations

(To — t§/)(To + 15/ =0, (T —t)/>) (T +1,/*) =0
and (T, —tY*)(Ti +t7Y?) =0 fori=1,....k—1.
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(1) The two-boundary (two-pole) braid group By is generated by

i i+l
0 . B .
Tk:m, TO:D\‘ and Tl-le for1 <i<k-—1,
i it
. . Thoo Ty
subject to relations g:g_g _____ kOQ kol_T’“ .
(2) Fix constants tg,tg,t =t1 =to = - =t_1 € C.

The affine type C Hecke algebra Hy, is the quotient of CBj by the
relations (T; — t;/Q)(TZ- + t_l/Q) =0.

i

(3) Set
Eo=a2]]-& (o= ~T)
d=u10- 7 (ex = 1/> ~ Ty)
o=l =R (i = £/ )

so that €3 = zje; (for good 2;).
The two-boundary Temperley-Lieb algebra is the quotient of Hy by the
relations e;e;r1e; = e; fori=1,...,k — 1.



Qu grp

(1) The two-boundary (two-pole) braid group By is generated by

i i+l

K
T 1= and 1= 2 riziziot
i i+l
(2) Fix constants tg,tg,t =t1 =tg = - =t_1 € C.

The affine type C Hecke algebra Hy, is the quotient of CBy, by the
relations (7; — 1/2)(T + t_1/2) 0.

(3) Set

o8 You][- e Z-n] [

so that e? = z;je;. The two-boundary Temperley-Lieb algebra is the

quotient of Hy, by the relations e;e;41e; =¢; fori=1,...,k — 1.
Universal Type B, C, D Type A Small Type A
(orthog. & sympl.) (gen. & sp. linear) (GL2 & SLo)

Two-pole braids Two-pole BMW Affine Hecke Two-boundary TL

fl e fl e Q f C ~ A
A< | G | | B2
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Theorem (D.-Ram)

(1)

Let U = U,g for any complex reductive Lie algebras g.
Let M, N, and V be finite-dimensional modules.

The two-boundary braid group By, acts on M ® (V)®* @ N and this
action commutes with the action of U.

If g = gl,,, then (for correct choices of M, N, and V'),
the affine Hecke algebra of type C, Hy, acts on M ® (V)‘X’k’ QN
and this action commutes with the action of U.

If g = gly, then the action of the two-boundary Temperley-Lieb
algebra factors through the T.L. quotient of Hy,.



Theorem (D.-Ram)

(1) Let U = U,g for any complex reductive Lie algebras g.
Let M, N, and V be finite-dimensional modules.

The two-boundary braid group By, acts on M ® (V)®* @ N and this
action commutes with the action of U.

(2) Ifg=gl,, then (for correct choices of M, N, and V),
the affine Hecke algebra of type C, Hy, acts on M ® (V)‘X”“ QN
and this action commutes with the action of U.

(3) If g = gly, then the action of the two-boundary Temperley-Lieb
algebra factors through the T.L. quotient of Hy,.

Some results:
(a) A diagrammatic intuition for Hy.

(b) A combinatorial classification and construction of irreducible
representations of Hy (type C with distinct parameters) via central
characters and generalizations of Young tableaux.

(c) A classification of the representations of T'Ly, in [dGNO08] via central
characters, including answers to open questions and conjectures
regarding their irreducibility and isomorphism classes.
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