Representation theory and combinatorics of braid algebras and their quotients.

Zajj Daugherty
The City College of New York
\& The CUNY Graduate Center

January 14, 2020
Slides available at https://zdaugherty.ccnysites.cuny.edu/research/

Schur-Weyl Duality

The symmetric group S_{k} (permutations) as diagrams:

Schur-Weyl Duality

The symmetric group S_{k} (permutations) as diagrams:

(with multiplication given by concatenation)

Schur-Weyl Duality

The symmetric group S_{k} (permutations) as diagrams:

(with multiplication given by concatenation)

Schur-Weyl Duality

The symmetric group S_{k} (permutations) as diagrams:

(with multiplication given by concatenation)

Schur-Weyl Duality

$\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k}
$$

Schur-Weyl Duality

$\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

S_{k} also acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ by place permutation.

Schur-Weyl Duality

$\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

S_{k} also acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ by place permutation.

These actions commute.

$g v_{2} \otimes g v_{4} \otimes g v_{1} \otimes g v_{5} \otimes g v_{3}$

VS.

Schur-Weyl Duality

Schur (1901): S_{k} and GL_{n} have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$. Even better,

$\underbrace{\operatorname{End}_{\mathrm{GL}_{n}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)}_{$| (all linear maps that |
| :---: |
| commute with GL $\mathrm{L}_{n} \text {) }$ |$}=\underbrace{\pi\left(\mathbb{C} S_{k}\right)}_{$| (img of S_{k} |
| :---: |
| action) |$}$ and $\operatorname{End}_{S_{k}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\underbrace{\rho\left(\mathbb{C G L}_{n}\right)}_{$| (img of action) $^{\otimes}$ |
| :---: |$}$.

Schur-Weyl Duality

Schur (1901): S_{k} and GL_{n} have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$.
Even better,

$\underbrace{\operatorname{End}_{\mathrm{GL}_{n}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)}_{$| (all linear maps that |
| :---: |
| commute with GL $\mathrm{L}_{n} \text {) }$ |$}=\underbrace{\pi\left(\mathbb{C} S_{k}\right)}_{$| (img of S_{k} |
| :---: |
| action) |$}$ and $\operatorname{End}_{S_{k}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\underbrace{\rho\left(\mathbb{C G L}_{n}\right)}_{$| (img of GL_{n} |
| :---: |
| action) |$}$.

Powerful consequence: a duality between representations
The double-centralizer relationship produces

$$
\left(\mathbb{C}^{n}\right)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^{\lambda} \otimes S^{\lambda} \quad \text { as a } \mathrm{GL}_{n}-S_{k} \text { bimodule, }
$$

where G^{λ} are distinct irreducible GL_{n}-modules S^{λ} are distinct irreducible S_{k}-modules

Schur-Weyl Duality

Schur (1901): S_{k} and GL_{n} have commuting actions on $\left(\mathbb{C}^{n}\right)^{\otimes k}$.
Even better,

$\underbrace{\operatorname{End}_{\mathrm{GL}_{n}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)}_{$| (all linear maps that |
| :---: |
| commute with GL $\mathrm{GL}_{n} \text {) }$ |$}=\underbrace{\pi\left(\mathbb{C} S_{k}\right)}_{$| (img of S_{k} |
| :---: |
| action) |$}$ and $\operatorname{End}_{S_{k}}\left(\left(\mathbb{C}^{n}\right)^{\otimes k}\right)=\underbrace{\rho(\mathbb{C G L})}_{$| (img of GL GL |
| :---: |
| action) |$}$.

Powerful consequence: a duality between representations
The double-centralizer relationship produces

$$
\left(\mathbb{C}^{n}\right)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^{\lambda} \otimes S^{\lambda} \quad \text { as a } \mathrm{GL}_{n}-S_{k} \text { bimodule, }
$$

where G^{λ} are distinct irreducible GL_{n}-modules
S^{λ} are distinct irreducible S_{k}-modules
For example,
$\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}=\left(G^{\square \square} \otimes S^{\square \square}\right) \oplus\left(G^{\square} \otimes S^{\square}\right) \oplus\left(G^{母} \otimes S^{\boxminus}\right)$

More centralizer algebras

Brauer (1937)
Orthogonal and symplectic groups acting on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally centralize the Brauer algebra:

with $\bigcirc=n$
(Diagrams encoding maps $V^{\otimes k} \rightarrow V^{\otimes k}$ that commute with the action of some classical algebra.)

More centralizer algebras

Brauer (1937)
Orthogonal and symplectic groups acting on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally centralize the Brauer algebra:

Temperley-Lieb (1971) GL_{2} and SL_{2} acting on $\left(\mathbb{C}^{2}\right)^{\otimes k}$ diagonally centralize the Temperley-Lieb algebra:

(Diagrams encoding maps $V^{\otimes k} \rightarrow V^{\otimes k}$ that commute with the action of some classical algebra.)

More centralizer algebras

Brauer (1937)
Orthogonal and symplectic groups (and Lie algebras) acting on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally centralize the Brauer algebra:

Temperley-Lieb (1971)
GL_{2} and SL_{2} (and $\mathfrak{g l}_{2}$ and $\mathfrak{s l}_{2}$) acting on $\left(\mathbb{C}^{2}\right)^{\otimes k}$ diagonally centralize the Temperley-Lieb algebra:

with $\longrightarrow=2$
(Diagrams encoding maps $V^{\otimes k} \rightarrow V^{\otimes k}$ that commute with the action of some classical algebra.)

Quantum groups and braids

Let \mathfrak{g} be a Lie algebra, and fix $q \in \mathbb{C}$.
One deformation of \mathfrak{g} is the Drinfel'd-Jimbo quantum group $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$.

Quantum groups and braids

Let \mathfrak{g} be a Lie algebra, and fix $q \in \mathbb{C}$.
One deformation of \mathfrak{g} is the Drinfel'd-Jimbo quantum group $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$. $\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

$$
\check{\mathcal{R}}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that (1) satisfies braid relations, and
(2) commutes with the action on $V^{\otimes k}$ for any \mathcal{U}-modules V, W.

Quantum groups and braids

Let \mathfrak{g} be a Lie algebra, and fix $q \in \mathbb{C}$.
One deformation of \mathfrak{g} is the Drinfel'd-Jimbo quantum group $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$. $\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

$$
\check{\mathcal{R}}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that (1) satisfies braid relations, and
(2) commutes with the action on $V^{\otimes k}$ for any \mathcal{U}-modules V, W.

The braid group shares a commuting action with \mathcal{U} on $V^{\otimes k}$:

Quantum groups and braids

Let \mathfrak{g} be a Lie algebra, and fix $q \in \mathbb{C}$.
One deformation of \mathfrak{g} is the Drinfel'd-Jimbo quantum group $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$. $\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

$$
\check{\mathcal{R}}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that (1) satisfies braid relations, and
(2) commutes with the action on $V^{\otimes k}$
for any \mathcal{U}-modules V, W.
The one-pole/affine braid group shares a commuting action with \mathcal{U} on $M \otimes V^{\otimes k}$:

Quantum groups and braids

Let \mathfrak{g} be a Lie algebra, and fix $q \in \mathbb{C}$.
One deformation of \mathfrak{g} is the Drinfel'd-Jimbo quantum group $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$. $\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

$$
\check{\mathcal{R}}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that (1) satisfies braid relations, and
(2) commutes with the action on $V^{\otimes k}$ for any \mathcal{U}-modules V, W.

The two-pole braid group shares a commuting action with \mathcal{U} on $M \otimes V^{\otimes k} \otimes N$:

Universal

Type B, C, D
Type A
Small Type A
(orthog. \& sympl.) (gen. \& sp. linear)

$$
\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)
$$

$\frac{60}{0}$
$\frac{2}{60}$
$\frac{0}{1}$

Hecke algebra

$$
\dot{S}=a \grave{O}+!!
$$

sdnoィs mnłuenð

Universal

Type B, C, D
Type A
Small Type A
(orthog. \& sympl.)
(gen. \& sp. linear)

$$
\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)
$$

$\frac{60}{0}$
$\frac{2}{2}$
.$\frac{0}{4}$

Hecke algebra

$$
\mathscr{S}=a \grave{O}+!!
$$

Two-pole braids

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl (BMW) algebras, built from Brauer algebras and their Jucys-Murphy elements.

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl (BMW) algebras, built from Brauer algebras and their Jucys-Murphy elements.
Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.

Qu. grps:

Orthogonal and
symplectic
(types B, C, D) Lie algs:

> Deg. 2-bdry BMW

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl (BMW) algebras, built from Brauer algebras and their Jucys-Murphy elements.
Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.
D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

Example: "Admissibility conditions"

Affine BMW algebra

Closed loops:

Degenerate affine BMW algebra

Closed loops:

Example: "Admissibility conditions"

Affine BMW algebra

Closed loops:

Degenerate affine BMW algebra

Closed loops:

The associated parameters of the algebra, e.g.

aren't entirely free (more so in "cyclotomic quotients").

Example: "Admissibility conditions"

Affine BMW algebra

Closed loops:

Degenerate affine BMW algebra

Closed loops:

The associated parameters of the algebra, e.g.

aren't entirely free (more so in "cyclotomic quotients"). Important insight: As operators on tensor space $M \otimes V \otimes V$,

"Higher Casimir invariants"

Qu. grps:

Orthogonal and
symplectic
(types B, C, D) Lie algs:

> Deg. 2-bdry BMW

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl (BMW) algebras, built from Brauer algebras and their Jucys-Murphy elements.
Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.
D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

Qu. grps:

Orthogonal and
symplectic
(types B, C, D) Lie algs:

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl (BMW) algebras, built from Brauer algebras and their Jucys-Murphy elements.
Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.
D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

D.-González-Schneider-Sutton:

Constructing 2-boundary analogues (in progress.).

Qu. grps:

Orthogonal and
symplectic
(types B, C, D) Lie algs:

Nazarov (95): Introduced degenerate affine Birman-Murakami-Wenzl (BMW) algebras, built from Brauer algebras and their Jucys-Murphy elements.
Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^{\otimes k}$ commuting with the action of the quantum groups of types B, C, D.
D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

D.-González-Schneider-Sutton:

Constructing 2-boundary analogues (in progress.).

Balagovic et al.:

Signed versions and representations of periplectic Lie superalgebras.

Universal

Type B, C, D
Type A
Small Type A
(orthog. \& sympl.)
(gen. \& sp. linear)

$$
\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)
$$

$\frac{60}{0}$
$\frac{2}{2}$
.$\frac{0}{4}$

Hecke algebra

$$
\mathscr{S}=a \grave{O}+!!
$$

Two-pole braids

Universal

Type B, C, D
Type A
Small Type A
(orthog. \& sympl.)
(gen. \& sp. linear)

$$
\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)
$$

Hecke algebra

$$
\dot{S}=a \grave{O}+!!
$$

sdnoィ®ి mnłuenð

Type B, C, D Type A
(orthog. \& sympl.) (gen. \& sp. linear)

Small Type A
$\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)$


```
Type B, C, D
    Type A
(gen. & sp. linear)

Small Type A


Two boundary algebras (type A)
Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra \(T L_{k}\) :


Type B, C, D Type A
(orthog. \& sympl.)


Two boundary algebras (type A)
Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra \(T L_{k}\) :

de Gier, Nichols (2008): Explored representation theory of \(T L_{k}\) using diagrams and established a connection to the affine Hecke algebras of type A and C.

Type B, C, D Type A
(orthog. \& sympl.)


Two boundary algebras (type A)
Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra \(T L_{k}\) :

de Gier, Nichols (2008): Explored representation theory of \(T L_{k}\) using diagrams and established a connection to the affine Hecke algebras of type A and C.
D. (2010): The centralizer of \(\mathfrak{g l}_{n}\) acting on tensor space \(M \otimes V^{\otimes k} \otimes N\) displays type C combinatorics for good choices of \(M, N\), and \(V\).

The two-boundary (two-pole) braid group \(\mathcal{B}_{k}\) is generated by
\[
T_{k}=\overbrace{\cdot}^{\cdot 9}, \quad T_{0}=\underbrace{9,}_{\sigma} \text { and } \quad T_{i}=\underbrace{i+1}_{i} \quad \text { for } 1 \leq i \leq k-1
\]

The two-boundary (two-pole) braid group \(\mathcal{B}_{k}\) is generated by
\[
T_{k}=\cdot \stackrel{9}{\cdot}, \quad T_{0}=\overbrace{\Delta}^{9,} \text { and } \quad T_{i}=\overbrace{i}^{i+1} \quad \text { for } 1 \leq i \leq k-1
\]
subject to relations


The two-boundary (two-pole) braid group \(\mathcal{B}_{k}\) is generated by
\[
T_{k}=\cdot \stackrel{9}{\cdot}, \quad T_{0}=\overbrace{\Delta}^{9,} \text { and } \quad T_{i}=\overbrace{i}^{i+1} \quad \text { for } 1 \leq i \leq k-1
\]
subject to relations


The two-boundary (two-pole) braid group \(\mathcal{B}_{k}\) is generated by
\[
T_{k}=\stackrel{9}{\cdot}, \quad T_{0}=\overbrace{\Delta}^{9,} \text { and } \quad T_{i}=\overbrace{i}^{i+1} \quad \text { for } 1 \leq i \leq k-1 \text {, }
\]
subject to relations


and, similarly, \(T_{k-1} T_{k} T_{k-1} T_{k}=T_{k} T_{k-1} T_{k} T_{k-1}\).

The two-boundary (two-pole) braid group \(\mathcal{B}_{k}\) is generated by
\[
T_{k}=\cdot \frac{9}{d}, \quad T_{0}=\overbrace{\Delta}^{9,} \text { and } \quad T_{i}=\overbrace{i}^{i} \overbrace{i+1}^{i+1} \quad \text { for } 1 \leq i \leq k-1 \text {, }
\]
subject to relations

i.e.

and, similarly, \(T_{k-1} T_{k} T_{k-1} T_{k}=T_{k} T_{k-1} T_{k} T_{k-1}\).
(1) The two-boundary (two-pole) braid group \(\mathcal{B}_{k}\) is generated by
\[
T_{k}=\overbrace{\cdot}^{\cdot \uparrow}, \quad T_{0}=\underbrace{\int!}_{0} \text { and } T_{i}=\underbrace{i+1}_{i} \quad \text { for } 1 \leq i \leq k-1 \text {, }
\]

(1) The two-boundary (two-pole) braid group \(\mathcal{B}_{k}\) is generated by
\[
T_{k}=\stackrel{9}{\cdot}, \quad T_{0}=\underbrace{\int \cdot}_{0} \text { and } \quad T_{i}=\underbrace{i+1}_{i} \quad \text { for } 1 \leq i \leq k-1 \text {, }
\]

(2) Fix constants \(t_{0}, t_{k}, t \in \mathbb{C}\).

The affine type C Hecke algebra \(\mathcal{H}_{k}\) is the quotient of \(\mathbb{C B}_{k}\) by the relations
\[
\begin{aligned}
& \left(T_{0}-t_{0}^{1 / 2}\right)\left(T_{0}+t_{0}^{-1 / 2}\right)=0, \quad\left(T_{k}-t_{k}^{1 / 2}\right)\left(T_{k}+t_{k}^{-1 / 2}\right)=0 \\
& \text { and } \quad\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)=0 \quad \text { for } i=1, \ldots, k-1
\end{aligned}
\]
(1) The two-boundary (two-pole) braid group \(\mathcal{B}_{k}\) is generated by

(2) Fix constants \(t_{0}, t_{k}, t=t_{1}=t_{2}=\cdots=t_{k-1} \in \mathbb{C}\).

The affine type C Hecke algebra \(\mathcal{H}_{k}\) is the quotient of \(\mathbb{C B}_{k}\) by the relations \(\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0\).
(1) The two-boundary (two-pole) braid group \(\mathcal{B}_{k}\) is generated by
\[
T_{k}=\stackrel{9}{\cdot}, \quad T_{0}=\underbrace{\int \cdot}_{\Delta} \text { and } T_{i}=\underbrace{i+1}_{i} \quad \text { for } 1 \leq i \leq k-1 \text {, }
\]

(2) Fix constants \(t_{0}, t_{k}, t=t_{1}=t_{2}=\cdots=t_{k-1} \in \mathbb{C}\).

The affine type C Hecke algebra \(\mathcal{H}_{k}\) is the quotient of \(\mathbb{C B}_{k}\) by the relations \(\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0\).
(3) Set
\[
\begin{aligned}
& \xi=t_{0}^{1 / 2} \Pi 0-\frac{\prod \quad}{\sigma} \\
& \left(e_{0}=t_{0}^{1 / 2}-T_{0}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \left(e_{k}=t_{k}^{1 / 2}-T_{k}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \left(e_{i}=t^{1 / 2}-T_{i}\right)
\end{aligned}
\]
so that \(e_{j}^{2}=z_{j} e_{j}\left(\right.\) for \(\left.\operatorname{good} z_{j}\right)\).
(1) The two-boundary (two-pole) braid group \(\mathcal{B}_{k}\) is generated by
\[
\begin{aligned}
& \text { for } 1 \leq i \leq k-1 \text {, }
\end{aligned}
\]

(2) Fix constants \(t_{0}, t_{k}, t=t_{1}=t_{2}=\cdots=t_{k-1} \in \mathbb{C}\).

The affine type C Hecke algebra \(\mathcal{H}_{k}\) is the quotient of \(\mathbb{C} \mathcal{B}_{k}\) by the relations \(\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0\).
(3) Set
\[
\begin{aligned}
& \left(e_{k}=t_{k}^{1 / 2}-T_{k}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \left(e_{i}=t^{1 / 2}-T_{i}\right)
\end{aligned}
\]
so that \(e_{j}^{2}=z_{j} e_{j}\left(\right.\) for \(\left.\operatorname{good} z_{j}\right)\).
The two-boundary Temperley-Lieb algebra is the quotient of \(\mathcal{H}_{k}\) by the relations \(e_{i} e_{i \pm 1} e_{i}=e_{i}\) for \(i=1, \ldots, k-1\).
(1) The two-boundary (two-pole) braid group \(\mathcal{B}_{k}\) is generated by
\[
T_{k}=\cdot \overbrace{}^{\circ}, \quad T_{0}=\underbrace{\int \prime}_{\Delta} \text { and } \quad T_{i}=\underbrace{i+1}_{i} \quad \text { for } 1 \leq i \leq k-1 .
\]
(2) Fix constants \(t_{0}, t_{k}, t=t_{1}=t_{2}=\cdots=t_{k-1} \in \mathbb{C}\). The affine type C Hecke algebra \(\mathcal{H}_{k}\) is the quotient of \(\mathbb{C B}_{k}\) by the relations \(\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0\).
(3) Set

so that \(e_{j}^{2}=z_{j} e_{j}\). The two-boundary Temperley-Lieb algebra is the quotient of \(\mathcal{H}_{k}\) by the relations \(e_{i} e_{i \pm 1} e_{i}=e_{i}\) for \(i=1, \ldots, k-1\).

Universal


Type B, C, D
(orthog. \& sympl.)

Type A
(gen. \& sp. linear)


Small Type A
\(\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)\)


Theorem (D.-Ram)
(1) Let \(U=U_{q} \mathfrak{g}\) for any complex reductive Lie algebras \(\mathfrak{g}\). Let \(M, N\), and \(V\) be finite-dimensional modules.
The two-boundary braid group \(B_{k}\) acts on \(M \otimes(V)^{\otimes k} \otimes N\) and this action commutes with the action of \(U\).
(2) If \(\mathfrak{g}=\mathfrak{g l}_{n}\), then (for correct choices of \(M, N\), and \(V\) ), the affine Hecke algebra of type \(C, H_{k}\), acts on \(M \otimes(V)^{\otimes k} \otimes N\) and this action commutes with the action of \(U\).
(3) If \(\mathfrak{g}=\mathfrak{g l}_{2}\), then the action of the two-boundary Temperley-Lieb algebra factors through the T.L. quotient of \(H_{k}\).

Theorem (D.-Ram)
(1) Let \(U=U_{q} \mathfrak{g}\) for any complex reductive Lie algebras \(\mathfrak{g}\). Let \(M, N\), and \(V\) be finite-dimensional modules.
The two-boundary braid group \(B_{k}\) acts on \(M \otimes(V)^{\otimes k} \otimes N\) and this action commutes with the action of \(U\).
(2) If \(\mathfrak{g}=\mathfrak{g l}_{n}\), then (for correct choices of \(M, N\), and \(V\) ), the affine Hecke algebra of type \(C, H_{k}\), acts on \(M \otimes(V)^{\otimes k} \otimes N\) and this action commutes with the action of \(U\).
(3) If \(\mathfrak{g}=\mathfrak{g l}_{2}\), then the action of the two-boundary Temperley-Lieb algebra factors through the T.L. quotient of \(H_{k}\).
Some results:
(a) A diagrammatic intuition for \(H_{k}\).
(b) A combinatorial classification and construction of irreducible representations of \(H_{k}\) (type C with distinct parameters) via central characters and generalizations of Young tableaux.
(c) A classification of the representations of \(T L_{k}\) in [dGN08] via central characters, including answers to open questions and conjectures regarding their irreducibility and isomorphism classes.
\begin{tabular}{ccc} 
Universal & \begin{tabular}{c} 
Type B, C, D
\end{tabular} & Type A \\
& (orthog. \& sympl.) & (gen. \& sp. linear)
\end{tabular}



Two-pole braids \(\frac{9}{T r} \%\)

\[
\begin{aligned}
& \text { Hecke algebra } \\
& S=a \grave{S}+! \\
& \hline
\end{aligned}
\]

\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Affine Hecke \\
of type A \\
(+twists)
\end{tabular} \\
\hline
\end{tabular}

> Affine Hecke of type C (+twists)


Small Type A
\(\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)\)


Two-boundary TL Cosers```

