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The classical Brauer algebra

The Brauer algebra Bk(δ) is the space spanned by Brauer diagrams
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concatenation, subject to the relation = δ.
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Action on tensor space
The Brauer algebra Bk(δ) is generated by

si =

i i+1

i+1

. . . . . . and ei =

i i+1

i+1

. . . . . . , i = 1, . . . , k − 1,

with expected relations.

Let V be a finite dimensional vector space, with β : V ⊗ V → C a
non-degenerate symmetric (resp. skew symmetric) bilinear form on V ,
and β∗ its dual. Then the map Bk(δ)→ End(V ⊗k) that sends

si 7→ 1⊗i−1 ⊗ s⊗ 1k−i−1, ei 7→ 1⊗i−1 ⊗ β∗β ⊗ 1k−i−1,

where s(u⊗ v) = v ⊗ u, is a map

Bk(δ) −→ Endg(V ⊗k)

when g = so(V ) (resp. sp(V )), δ = dimV (resp. −dimV ).

Consequence: Schur-Weyl duality between modules for Bk(δ) and g,

V ⊗k =
⊕

λ`k,k−2,...

Bλk ⊗ L(λ),

where Bλk are distinct simple Brauer modules, and L(λ) are distinct
simple (highest weight) g-modules.
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Jucys-Murphy elements
For i < j, let

si,j =

i j

j

. . . . . .
. . .

and ei,j =

i j

j

. . . . . .. . . .

Brauer algebra Bk(δ) has Jucys-Murphy elements

xj = constant +

j−1∑
i=1

si,j − ei,j , j = 1, . . . , k,

that (See Nazarov ’96, D.-Ram-Virk ’13 & ’14.)

1. pairwise commute;
2. generate the center; and
3. have eigenvalues in End(V ⊗k) given by combinatorial data

from the partitions lattice.

Let Γ be a basis for g, and Γ = {b∗ | b ∈ Γ} be the dual basis with
respect to a nice bilinear form. The split Casimir invariant
Ug⊗ Ug is

γ =
∑
b∈Γ

b⊗ b∗.

Then γ acts on V ⊗ V by s1 − e1, so the action of xi is given by

xi

∣∣∣
V ⊗k

= constant +
∑

j=1,...,i−1

γ
∣∣∣
V (j),V (i)

.
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Jucys-Murphy elements
Now let M be a simple g module, and define an operator on
M ⊗ V ⊗k by

yi = constant + γ
∣∣∣
M,V (i)

+
∑

j=1,...,i−1

γ
∣∣∣
V (j),V (i)

.

(When M = L(0), this is the same as xi from before.)

Nice facts: Still. . .

1. y1, . . . , yk commute;

2. yi ∈ Endg(M ⊗ V ⊗k);

3. they generate the center of the action; and

4. have eigenvalues given by combinatorial data from the
partitions lattice.

The graded Brauer algebra is the algebra generated by si and ei
for i = 1, . . . k − 1, and y1, . . . , yk (modulo relations), and is also
in Schur-Weyl duality with symplectic and orthogonal g.

Relations: − = − ,

= −
and

,= − .
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Lie superalgebras
A Lie superalgebra is a Z2-graded vector space g = g0 ⊕ g1 with a
super Lie bracket

[, ] : g⊗ g→ g

satisfying

[x, y] = −(−1)x̄ȳ[y, x]

and

[x, [y, z]]] = [[x, y], z] + (−1)x̄ȳ[y, [x, z]],

where x, y, z are each homogeneous, and x̄ means degree.

Three types: basic, Cartan type, and strange (two families:
periplectic and queer).

Let V = V0 ⊕ V1 = Cm|n be a Z2-graded vector space over C.

The general linear Lie superalgebra is

gl(m|n) = End(V ) = g0 ⊕ g1,

where

Bracket: [x, y] = xy − (−1)x̄ȳyx.
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Lie superalgebras

A Lie superalgebra is a Z2-graded vector space g = g0 ⊕ g1 with a
super Lie bracket [, ] : g⊗ g→ g satisfying a super symmetry and
super Jacobi identity.

Three types: basic, Cartan type, and strange (two families:
periplectic and queer).

Let V = V0 ⊕ V1 = Cm|n be a Z2-graded vector space over C.
For (homogeneous) v ∈ Vi, write v̄ = i for its degree.

The general linear Lie superalgebra is

gl(m|n) = End(V ) = g0 ⊕ g1,

where

g0 =

{(
A 0
0 D

) ∣∣∣∣ A ∈ End(V0), D ∈ End(V1)

}
,

g1 =

{(
0 B
C 0

) ∣∣∣∣ B ∈ Hom(V1, V0), C ∈ Hom(V0, V1)

}
.

Bracket: [x, y] = xy − (−1)x̄ȳyx.



Lie superalgebras
Let β : V ⊗ V → C be a nondegenerate, homogeneous, bilinear
form satisfying

β(v, w) = (−1)v̄w̄β(w, v) (supersymmetric).

Then

g = {x ∈ End(V ) | β(xu, v) + (−1)x̄ūβ(v, xu)}
is a Lie superalgebra (Z2-graded). For example, if β is even,
g = osp(V ) the orthosymplectic Lie superalgebra (if V1 = 0,
g = so(V ); and if V0 = 0, g = sp(V )).

If β is odd, then g is the periplectic Lie superalgebra,

p(V ) = p(n) = {x ∈ End(V ) | β(xv,w) + (−1)x̄v̄β(v, xw) = 0}.
Specifically, we have

p(n) ∼=
{(

A B
C −At

)
∈ gl(n|n)

∣∣∣∣ B = Bt, C = −Ct
}
.

Then, as vector spaces p(n) = g0 ⊕ g1 ⊕ g−1, where

g0 =

{(
A 0
0 −At

)}
∼= gl(n)

g1 =

{(
0 B
0 0

)}
, g−1 =

{(
0 0
C 0

)}
.

Goal: Study the representation theory of p(n). In particular, study
the category Fn of finite-dimensional integrable representations (a
“highest weight category”).
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Translation functors

Key ingredients for other cases: a large center in Ug, and
translation functors given by tensoring with the natural
representation followed by the projection onto a block (given by
eigenvalues of yi’s).

Namely, you study the action of Ug on

M ⊗ V ⊗ V ⊗ · · · ⊗ V = M ⊗ V ⊗d,
where V is g’s favorite module, and M is another simple module,
by constructing operators in Endg(M ⊗ V ⊗d) that commute with
the g-action. Many commuting operators are generated by taking
coproducts of central elements (again, like yi’s).

Examples: If g = so(V ) or sp(V ), then the commuting operators
generate the graded Brauer algebra; when g = sl(V ), you get the
“graded Hecke algebra of type A”.

Obstruction: The center of Up(V ) is trivial! But we’ll figure it out
anyway. . .
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Obstruction: The center of Up(V ) is trivial! But we’ll figure it out
anyway. . .
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Example: V ⊗ V
Recall: V = V0 ⊕ V1 = Cm|n is a Z2-graded vector space over C.
For (homogeneous) v ∈ Vi, write v̄ = i for its degree.

The algebra Endp(V )(V ⊗ V ) is 3-dimensional with basis 1,

s : v ⊗ w 7→ (−1)v̄w̄w ⊗ v, and e = β∗β : v ⊗ w 7→ β(v, w)c,

where c spans the (super) sign module.

Draw:

s = and e = .

(signed Brauer)

Relation: e ◦ s = e = −s ◦ e. Also, e2 = 0. (non-semisimple case)
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(Kujawa-Tharp 2014) The marked Brauer algebra Bk(δ, ε),
ε = ±1, is the space spanned by marked Brauer diagrams

d =
caps get one each,
cups get one or each,
no two markings at same height.

with equivalence up to isotopy except for the local relations

= ε

= ε
and

x

y
= ε

x

y

for any adjacent markings x and y (meaning no markings of
height between these two).

Again, multiplication is given by
vertical concatenation, with relations = δ,

= = and = ε = .
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(Kujawa-Tharp 2014) The marked Brauer algebra Bk(δ, ε),
ε = ±1, is the space spanned by marked Brauer diagrams
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Note:
(1) Bk(δ, 1) = Bk(δ).
(2) If ε = −1, then multiplication
is well-defined exactly when δ = 0.



The marked Brauer algebra Bk(δ, ε) is generated by

si =

i i+1

i+1

. . . . . . and ei =

i i+1

i+1

. . . . . . ,

for i = 1, . . . , k − 1, with relations exactly analogous to those for
the Brauer algebra, with some ε’s.

Back to Lie superalgebras: V = V0 ⊕ V1, let β : V ⊗ V → C be a
non-degenerate, homogeneous, bilinear form on V , and let g be
the corresponding β-invariant Lie superalgebra. Then with

β∗ : C→ V ⊗ V and
s : V ⊗ V → V ⊗ V

u⊗ v 7→ (−1)ūv̄v ⊗ u,

the map

ei 7→ 1⊗i−1 ⊗ β∗β ⊗ 1k−i−1, si 7→ 1⊗i−1 ⊗ s⊗ 1k−i−1,

for i = 1, . . . , k − 1, gives

Bk(δ, ε) −→ Endg(V
⊗k)

when δ = dimV0 − dimV1 and ε = (−1)β̄ [KT14].
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Jucys-Murphy elements for Bk(δ, ε)
For the marked Brauer algebra,

xj = constant +

j−1∑
i=1

si,j − ei,j , c ∈ C, j = 1, . . . , k,

are still the Jucys-Murphy elements. So we define the graded
version similarly, with ε’s where needed,

Bk(δ, ε) = C[y1, . . . , yk]⊗Bk(δ, ε)/〈yi-relations〉

Namely, if we draw

yi = · · · · · ·
i

then

− = + ,

= − ,

and

= + .

Questions: For Bk(0,−1),
(1) what tensor space do we want analogous to M ⊗ V ⊗k?
(2) what’s the action of the yi’s?

Start with (2): p(V ) has trivial center! Namely, if Γ is a basis of
p(V ), then p(V ) does not contain a dual basis with respect to β.
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Sneaky split Casimir

Bk(δ, ε) = C[y1, . . . , yk]⊗Bk(δ, ε)/〈yi-relations〉.
Questions: For Bk(0,−1),
(1) what tensor space do we want analogous to M ⊗ V ⊗k?
(2) what’s the action of the yi’s?

Start with (2): p(V ) has trivial center! Namely, if Γ is a basis of
p(V ), then p(V ) does not contain a dual basis with respect to β.

In particular, considering p(V ) ⊆ gl(V ), then {b∗ | b ∈ Γ} is a
basis for p(V )⊥ ⊆ gl(V ). So

γ =
∑
b∈Γ

b⊗ b∗ ∈ Up(V )⊗ Up(V )⊥.

However, γ does have a natural action on M ⊗ V , since V is also
a gl(V )-module. And since it commutes with the action of gl(V ),
it commutes with p(V ). In particular, as before,

γi,j acts on V ⊗k as si,j − ei,j .
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What should M be in M ⊗ V ⊗k?
Try 1: For the partition λ of size `, take the indecomposable M(λ)
indexed by λ (the one paired with Bλ by Moon, Kujawa-Tharp) in
V ⊗`. Write the action of Bk(0,−1) on M(λ)⊗ V ⊗k in terms of
the the action of Bk(0,−1) on V ⊗`+k; make an inductive
argument.

Issues:
(a) Not big enough. In V ⊗ V , the minimal polynomial for γ is
(γ − 1)(γ + 1). So the image of B1(0,−1) in End(V ⊗ V ) (think
M = V , k = 1) is at most

B1(0,−1)/〈(y1 − 1)(y1 + 1)〉 (dim = 2).
But Endp(V )(V ⊗ V ) ∼= B2(0,−1) (dim = 3).

(b) Non-semisimple actions. In V ⊗ V = Sym2V ⊕
∧2V ,

e1 : Sym2V
β−→ C β∗−→

∧2(V )

has non-trivial image. So, for example, the action of B3(0,−1) on
V ⊗3 does not restrict to a closed action on (Sym2V )⊗ V .
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What should M be in M ⊗ V ⊗k?

Try 1: M(λ)⊗ V ⊗k ⊆ V ⊗|λ|+k (nope)

Try 2: Induce gl(V ) = g0 modules L(λ) up to p(V ). Again, the
dimensions to not match.

Try 3: Kac modules of two types: K(λ) (thin) and K̃(λ) (thick) .

Let φ =
∑

neg. roots α

α (like the staircase partition) and let V (λ) be the

simple g0-module of highest weight λ. Define

K(λ) = Indg
g0⊕g1V (λ− φ) K̃(λ) = Indg

g0⊕g−1
V (λ).

Then K(λ)⊗ V ∼= M1 ⊕ · · · ⊕Mn where

0→ K(λ+ εi)→Mi → K(λ− εi)→ 0,

whenever λ± εi are dominant (add or remove a box to λ), or
replace K(∗) with 0 whenever they’re not (similar statement for
K̃). (Proof uses eigenvalues of γ on K(λ)⊗ V and K̃(λ)⊗ V , which

are combinatorial data in terms of boxes added/removed.)
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Some more results: ([BDEHHILNSS-1&2])

• Presentation of the graded signed Brauer algebra and related
algebras/categories.

• Basis and spanning sets in terms of decorated diagrams.
• Center given by a certain class of symmetric functions.
• Filtrations and specializations similar to the classical cases.

• Action on tensor space and translation functors.
• Translation functors given by actions on “weight diagrams”

(akin to spin chain diagrams).
• Algebraic structure: 0-Temperley-Lieb algebra.
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Hennig, Mee Seong Im, Gail Letzter, Emily Norton, Vera Serganova, and
Catharina Stroppel:

[1] “Translation functors and Kazhdan-Lusztig multiplicities for the Lie
superalgebra p(n), Mathematical Research Letters Vol.26, no.3.

[2] “The affine VW supercategory”, to appear in Selecta. arXiv:1801.04178

https://zdaugherty.ccnysites.cuny.edu


