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The classical Brauer algebra

The Brauer algebra By (6) is the space spanned by Brauer diagrams
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(equivalent under isotopy), with multiplication given by vertical
concatenation, subject to the relation O=s.
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Action on tensor space

The Brauer algebra By (0) is generated by
i i+1 i i+1

si=] X and e= ] =1 k-,

with expected relations.

Let V be a finite dimensional vector space, with 5: V@V — C a
non-degenerate symmetric (resp. skew symmetric) bilinear form on V,
and 3* its dual. Then the map By (§) — End(V®F) that sends
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where s(u ® v) = v ®u, is a map
By(8) — Endg (V®F)
when g = s0(V) (resp. sp(V)), 6 = dimV (resp. —dimV).
Consequence: Schur-Weyl duality between modules for By (§) and g,
Vb= @ BreoLW),
Ak k—2,...

where B} are distinct simple Brauer modules, and L()) are distinct
simple (highest weight) g-modules.
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UgUgis
v = Z b®b*.
bel
Then v actson V ® V by s; — e1, so the action of x; is given by
X; = constant + Z 'y‘



Jucys-Murphy elements
Now let M be a simple g module, and define an operator on
M @ VF by

= constant .
i = + ’Y‘ V(@) 7‘\/(]‘),\/(1‘)

7j=1,...0—
(When M = L(0), this is the same as x; from before.)
Nice facts: Still. ..
1. y1,..., Yy commute;
y; € Endy(M @ V&),
they generate the center of the action; and
have eigenvalues given by combinatorial data from the
partitions lattice.
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Jucys-Murphy elements

Now let M be a simple g module, and define an operator on
M @ VF by

i
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(When M = L(0), this is the same as x; from before.)

Nice facts: Still. ..

1. y1,...,yr commute;

y; € Endy(M @ V),

they generate the center of the action; and

have eigenvalues given by combinatorial data from the
partitions lattice.

The graded Brauer algebra is the algebra generated by s; and e;

Hwn

fori=1,...k—1, and y1, ...,y (modulo relations), and is also
in Schur-Weyl duality with symplectic and orthogonal g.
d=_% )

N
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Lie superalgebras
A Lie superalgebra is a Zy-graded vector space g = go & g1 with a
super Lie bracket
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where z, 9y, z are each homogeneous, and T means degree.
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Lie superalgebras

A Lie superalgebra is a Zo-graded vector space g = go @ g1 with a
super Lie bracket [,]:g® g — g satisfying a super symmetry and
super Jacobi identity.

Three types: basic, Cartan type, and strange (two families:
periplectic and queer).

Let V=V V; = C™" pe a Zo-graded vector space over C.
For (homogeneous) v € V;, write v = i for its degree.

The general linear Lie superalgebra is
gl(m|n) = End(V) = go @ g1,
where

o = { (g‘ g) ' A €End(Vp), D € End(Vl)} ,

g1 = { <g ﬁ) ’ B € Hom(V1, V), C € Hom(Vo,Vl)} .

Bracket: [x,y] = zy — (—1)™yzx.
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Lie superalgebras
Let 8: V ® V — C be a nondegenerate, homogeneous, bilinear
form satisfying

B(v,w) = (=1)""B(w,v) (supersymmetric).
If 3 is odd, then g is the periplectic Lie superalgebra,
p(V) =p(n) = {z € End(V) | B(zv,w) + (=1)* (v, 2w) = 0}.

Specifically, we have

p(n) = { @ _@) € al(n|n) ‘ B=B.C= _ct}.

Then, as vector spaces p(n) = go © g1 ® g—1, where

R FN T
w0 D) {2}

Goal: Study the representation theory of p(n). In particular, study
the category JF,, of finite-dimensional integrable representations (a
“highest weight category”).
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Translation functors

Key ingredients for other cases: a large center in Ug, and
translation functors given by tensoring with the natural
representation followed by the projection onto a block (given by
eigenvalues of y;'s).

Namely, you study the action of U/g on

MeVeVe -@V=MaVe
where V' is g's favorite module, and M is another simple module,
by constructing operators in Endg(M ® V®?) that commute with
the g-action. Many commuting operators are generated by taking
coproducts of central elements (again, like y;'s).

Examples: If g =s0(V') or sp(V'), then the commuting operators
generate the graded Brauer algebra; when g = sl(V'), you get the
“graded Hecke algebra of type A”.

Obstruction: The center of Up(V') is trivial! But we'll figure it out
anyway. . .
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Example: V@V

Recall: V=Vop Vi = C™" s a Zo-graded vector space over C.
For (homogeneous) v € V;, write © = i for its degree.

The algebra End,, 1y (V ® V') is 3-dimensional with basis 1,
s;v@we (-1)™w®v, and e=B*B:v@w— B(v,w)e,
where ¢ spans the (super) sign module.

Draw:
\</'
5= >< and e=_, . (signed Brauer)

Relation: eos=e= —soe. Also, e2 =0. (non-semisimple case)
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(Kujawa-Tharp 2014) The marked Brauer algebra By(9, €),
€ = +1, is the space spanned by marked Brauer diagrams

caps get one ¢ each,
d= cups get one B or « each,
no two markings at same height.

with equivalence up to isotopy except for the local relations

\»/ —¢ \</ . @ @
an =€
&= O~ o
for any adjacent markings @ and @ (meaning no markings of
height between these two). Again, multiplication is given by
vertical concatenation, with relations O =9,

g = — = Note:
q (1) Bi(9,1) = B(9).
an (2) If € = —1, then multiplication
== is well-defined exactly when § = 0.
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The marked Brauer algebra By(, €) is generated by

i il i it
[ X ] g
Sz: .« e oo and 67,: ..../0\... ,
fori=1,...,k — 1, with relations exactly analogous to those for

the Brauer algebra, with some €'s.

Back to Lie superalgebras: V=1, & Vi, let 5: V®V — C be a
non-degenerate, homogeneous, bilinear form on V, and let g be
the corresponding B-invariant Lie superalgebra. Then with

B:C—=V®V and S:VUQ;VU :Y?}Zyv@u,
the map
e 18 @ p B 1M s 1% g s 1
fori=1,...,k—1, gives
Bi(6,€) — Endy(VEF)

when § = dimVj — dimV; and € = (—1)7 [KT14].



Jucys-Murphy elements for By(0, €)
For the marked Brauer algebra,
j—1
xj = constant + ZSW —eyj, ce€C, j=1,..,k,
i=1
are still the Jucys-Murphy elements. So we define the graded
version similarly, with €'s where needed,

By (6,¢) = Clyi, - . ., yx]) ® Bk (9, €)/(y;-relations)

Namely, if we draw
7
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Sneaky split Casimir

Bk(5a 6) = C[yl, v 7yk] ® Bk((sa e)/(yi—relations).

Questions: For By (0, —1),
(1) what tensor space do we want analogous to M ® V®?
(2) what's the action of the y;'s?

Start with (2): p(V) has trivial center! Namely, if ' is a basis of
p(V), then p(V') does not contain a dual basis with respect to 5.

In particular, considering p(V') C gl(V), then {b* | b€ T} is a
basis for p(V)+ C gl(V). So
y=Y_bab* € Up(V)®Up(V)".
bel

However, v does have a natural action on M ® V, since V is also
a gl(V)-module. And since it commutes with the action of gl(V),
it commutes with p(V'). In particular, as before,

. Rk . .
vij actson V=% as s; i —e; ;.



What should M be in M ® V&7

Try 1: For the partition A of size ¢, take the indecomposable M (\)
indexed by A (the one paired with B* by Moon, Kujawa-Tharp) in
V®. Write the action of B, (0, —1) on M(\) ® V=¥ in terms of
the the action of B (0, —1) on V¥ make an inductive
argument.
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Try 1: For the partition A of size ¢, take the indecomposable M (\)
indexed by A (the one paired with B* by Moon, Kujawa-Tharp) in
V®. Write the action of B, (0, —1) on M(\) ® V=¥ in terms of
the the action of B (0, —1) on V¥ make an inductive
argument.

Issues:
(a) Not big enough. In V ® V, the minimal polynomial for ~ is
(v — 1)(y+1). So the image of B1(0,—1) in End(V ® V) (think
M =V, k=1)is at most

Bi(0,~1)/{(y1 — (g1 +1))  (dim =2).
But Endp(v)(v ® V) = BQ(O, —1) (dim = 3).

(b) Non-semisimple actions. In V ® V = Sym?V & /\QV,
e 9v, B BT 42
e1: Sym’V = C — A“(V)

has non-trivial image. So, for example, the action of B3(0,—1) on
V®3 does not restrict to a closed action on (Sym?V) ® V.
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What should M be in M ® V&7

Try 1: M(\) @ V& C VORI (nope)

Try 2: Induce gl(V') = go modules L(\) up to p(V'). Again, the
dimensions to not match.

Try 3: Kac modules of two types: K (\) (thin) and K ()\) (thick) .
Let ¢ = Z « (like the staircase partition) and let V'(\) be the

neg. roots «
simple go-module of highest weight \. Define

KA\ =Ind? . V(A—¢)  K(\) =Ind?
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What should M be in M ® V&7

Try 1: M(\) @ V& C VORI (nope)

Try 2: Induce gl(V') = go modules L(\) up to p(V'). Again, the
dimensions to not match.

Try 3: Kac modules of two types: K ()) (thin) and K () (thick) .
Let ¢ = Z « (like the staircase partition) and let V'(\) be the

neg. roots «

simple go-module of highest weight \. Define

K(\) =Ind ., VIA—¢)  K(\) =IndS 4, ,

Then K(\) @V = M; & --- & M, where

V(\).

0> KA\+e)—> M —KM\N—¢;)—0,

whenever \ + ¢; are dominant (add or remove a box to A), or
replace K (*) with 0 whenever they're not (similar statement for
K') (Proof uses eigenvalues of v on K(\) ® V and K(\) ® V, which
are combinatorial data in terms of boxes added/removed.)



KN®V =M &---$ M, where

0> KWA+e)—> M —-KAN-—¢)—0,
whenever \ £ ¢; are dominant (add or remove a box to \), or replace
K (x) with 0 whenever they're not (similar statement for K).




Some more results: ([BDEHHILNSS-1&2])

e Presentation of the graded signed Brauer algebra and related
algebras/categories.

e Basis and spanning sets in terms of decorated diagrams.
e Center given by a certain class of symmetric functions.
o Filtrations and specializations similar to the classical cases.
e Action on tensor space and translation functors.
e Translation functors given by actions on “weight diagrams”
(akin to spin chain diagrams).
o Algebraic structure: 0-Temperley-Lieb algebra.
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