Signed Brauer algebras and their translations

Zajj Daugherty
The City College of New York
\& The CUNY Graduate Center

Joint with M. Balagovic, I. Entova-Aizenbud, I. Halacheva,
J. Hennig, M. S. Im, G. Letzter, E. Norton, V. Serganova, and C. Stroppel

October 2, 2019

The classical Brauer algebra

The Brauer algebra $B_{k}(\delta)$ is the space spanned by Brauer diagrams

$$
\begin{aligned}
& \text { perfect matchings of } \\
& \left\{1, \ldots, k, 1^{\prime}, \ldots, k^{\prime}\right\}
\end{aligned}
$$

(equivalent under isotopy), with multiplication given by vertical concatenation, subject to the relation $\bigcirc=\delta$.

The classical Brauer algebra

The Brauer algebra $B_{k}(\delta)$ is the space spanned by Brauer diagrams

$$
\begin{aligned}
& \text { perfect matchings of } \\
& \left\{1, \ldots, k, 1^{\prime}, \ldots, k^{\prime}\right\}
\end{aligned}
$$

(equivalent under isotopy), with multiplication given by vertical concatenation, subject to the relation $\bigcirc=\delta$. For example,

Action on tensor space

The Brauer algebra $B_{k}(\delta)$ is generated by

$$
s_{i}=\left\lceil\cdots X^{i+1} \cdots\right\rceil \quad \text { and } \quad e_{i}=\lceil\cdots \stackrel{i+1}{\sim} \cdots\rceil, \quad i=1, \ldots, k-1,
$$

with expected relations.

Action on tensor space

The Brauer algebra $B_{k}(\delta)$ is generated by

$$
s_{i}=!\cdots \sum^{i+1} \cdots!\quad \text { and } \quad e_{i}=!\cdots \stackrel{i i+1}{\sim} \cdots!, \quad i=1, \ldots, k-1
$$

with expected relations.
Let V be a finite dimensional vector space, with $\beta: V \otimes V \rightarrow \mathbb{C}$ a non-degenerate symmetric (resp. skew symmetric) bilinear form on V, and β^{*} its dual.

Action on tensor space

The Brauer algebra $B_{k}(\delta)$ is generated by
with expected relations.
Let V be a finite dimensional vector space, with $\beta: V \otimes V \rightarrow \mathbb{C}$ a non-degenerate symmetric (resp. skew symmetric) bilinear form on V, and β^{*} its dual. Then the map $B_{k}(\delta) \rightarrow \operatorname{End}\left(V^{\otimes k}\right)$ that sends

$$
s_{i} \mapsto 1^{\otimes i-1} \otimes s \otimes 1^{k-i-1}, \quad e_{i} \mapsto 1^{\otimes i-1} \otimes \beta^{*} \beta \otimes 1^{k-i-1}
$$

where $s(u \otimes v)=v \otimes u$, is a map

$$
B_{k}(\delta) \rightarrow \operatorname{End}_{\mathfrak{g}}\left(V^{\otimes k}\right)
$$

when $\mathfrak{g}=\mathfrak{s o}(V)($ resp. $\mathfrak{s p}(V)), \delta=\operatorname{dim} V($ resp. $-\operatorname{dim} V)$.

Action on tensor space

The Brauer algebra $B_{k}(\delta)$ is generated by
with expected relations.
Let V be a finite dimensional vector space, with $\beta: V \otimes V \rightarrow \mathbb{C}$ a non-degenerate symmetric (resp. skew symmetric) bilinear form on V, and β^{*} its dual. Then the map $B_{k}(\delta) \rightarrow \operatorname{End}\left(V^{\otimes k}\right)$ that sends

$$
s_{i} \mapsto 1^{\otimes i-1} \otimes s \otimes 1^{k-i-1}, \quad e_{i} \mapsto 1^{\otimes i-1} \otimes \beta^{*} \beta \otimes 1^{k-i-1}
$$

where $s(u \otimes v)=v \otimes u$, is a map

$$
\begin{gathered}
B_{k}(\delta) \rightarrow \operatorname{End}_{\mathfrak{g}}\left(V^{\otimes k}\right) \\
\text { when } \mathfrak{g}=\mathfrak{s o}(V)(\text { resp. } \mathfrak{s p}(V)), \delta=\operatorname{dim} V(\text { resp. }-\operatorname{dim} V) .
\end{gathered}
$$

Consequence: Schur-Weyl duality between modules for $B_{k}(\delta)$ and \mathfrak{g},

$$
V^{\otimes k}=\bigoplus_{\lambda \vdash k, k-2, \ldots} B_{k}^{\lambda} \otimes L(\lambda),
$$

where B_{k}^{λ} are distinct simple Brauer modules, and $L(\lambda)$ are distinct simple (highest weight) \mathfrak{g}-modules.

Decompositions of $V^{\otimes k}$

Jucys-Murphy elements

For $i<j$, let

Jucys-Murphy elements

For $i<j$, let

Brauer algebra $B_{k}(\delta)$ has Jucys-Murphy elements

$$
x_{j}=\text { constant }+\sum_{i=1}^{j-1} s_{i, j}-e_{i, j}, \quad j=1, \ldots, k
$$

that
(See Nazarov '96, D.-Ram-Virk '13 \& '14.)

1. pairwise commute;
2. generate the center; and
3. have eigenvalues in $\operatorname{End}\left(V^{\otimes k}\right)$ given by combinatorial data from the partitions lattice.

Jucys-Murphy elements

Brauer algebra $B_{k}(\delta)$ has Jucys-Murphy elements

$$
x_{j}=\text { constant }+\sum_{i=1}^{j-1} s_{i, j}-e_{i, j}, \quad j=1, \ldots, k
$$

that
(See Nazarov '96, D.-Ram-Virk '13 \& '14.)

1. pairwise commute;
2. generate the center; and
3. have eigenvalues in $\operatorname{End}\left(V^{\otimes k}\right)$ given by combinatorial data from the partitions lattice.
Let Γ be a basis for \mathfrak{g}, and $\Gamma=\left\{b^{*} \mid b \in \Gamma\right\}$ be the dual basis with respect to a nice bilinear form. The split Casimir invariant
$U \mathfrak{g} \otimes U \mathfrak{g}$ is

$$
\gamma=\sum_{b \in \Gamma} b \otimes b^{*}
$$

Jucys-Murphy elements

Brauer algebra $B_{k}(\delta)$ has Jucys-Murphy elements

$$
x_{j}=\mathrm{constant}+\sum_{i=1}^{j-1} s_{i, j}-e_{i, j}, \quad j=1, \ldots, k
$$

that
(See Nazarov '96, D.-Ram-Virk '13 \& '14.)

1. pairwise commute;
2. generate the center; and
3. have eigenvalues in $\operatorname{End}\left(V^{\otimes k}\right)$ given by combinatorial data from the partitions lattice.
Let Γ be a basis for \mathfrak{g}, and $\Gamma=\left\{b^{*} \mid b \in \Gamma\right\}$ be the dual basis with respect to a nice bilinear form. The split Casimir invariant
$U \mathfrak{g} \otimes U \mathfrak{g}$ is

$$
\gamma=\sum_{b \in \Gamma} b \otimes b^{*}
$$

Then γ acts on $V \otimes V$ by $s_{1}-e_{1}$, so the action of x_{i} is given by

$$
\left.x_{i}\right|_{V^{\otimes k}}=\mathrm{constant}+\left.\sum_{j=1, \ldots, i-1} \gamma\right|_{V^{(j)}, V^{(i)}}
$$

Jucys-Murphy elements

Now let M be a simple \mathfrak{g} module, and define an operator on $M \otimes V^{\otimes k}$ by

$$
y_{i}=\text { constant }+\left.\gamma\right|_{M, V^{(i)}}+\left.\sum_{j=1, \ldots, i-1} \gamma\right|_{V^{(j)}, V^{(i)}}
$$

(When $M=L(0)$, this is the same as x_{i} from before.)
Nice facts: Still...

1. y_{1}, \ldots, y_{k} commute;
2. $y_{i} \in \operatorname{End}_{\mathfrak{g}}\left(M \otimes V^{\otimes k}\right)$;
3. they generate the center of the action; and
4. have eigenvalues given by combinatorial data from the partitions lattice.

Jucys-Murphy elements

Now let M be a simple \mathfrak{g} module, and define an operator on $M \otimes V^{\otimes k}$ by

$$
y_{i}=\text { constant }+\left.\gamma\right|_{M, V^{(i)}}+\left.\sum_{j=1, \ldots, i-1} \gamma\right|_{V^{(j)}, V^{(i)}}=\emptyset \cdots!\emptyset!\cdots!
$$

(When $M=L(0)$, this is the same as x_{i} from before.)
Nice facts: Still...

1. y_{1}, \ldots, y_{k} commute;
2. $y_{i} \in \operatorname{End}_{\mathfrak{g}}\left(M \otimes V^{\otimes k}\right)$;
3. they generate the center of the action; and
4. have eigenvalues given by combinatorial data from the partitions lattice.
The graded Brauer algebra is the algebra generated by s_{i} and e_{i} for $i=1, \ldots k-1$, and y_{1}, \ldots, y_{k} (modulo relations), and is also in Schur-Weyl duality with symplectic and orthogonal \mathfrak{g}.

Relations:

and

Lie superalgebras

A Lie superalgebra is a \mathbb{Z}_{2}-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket

$$
[,]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}
$$

satisfying

$$
[x, y]=-(-1)^{\bar{x} \bar{y}}[y, x]
$$

and

$$
[x,[y, z]]]=[[x, y], z]+(-1)^{\bar{x} \bar{y}}[y,[x, z]]
$$

where x, y, z are each homogeneous, and \bar{x} means degree.

Lie superalgebras

A Lie superalgebra is a \mathbb{Z}_{2}-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket

$$
[,]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}
$$

satisfying

$$
[x, y]=-(-1)^{\bar{x} \bar{y}}[y, x]
$$

and

$$
[x,[y, z]]]=[[x, y], z]+(-1)^{\bar{x} \bar{y}}[y,[x, z]]
$$

where x, y, z are each homogeneous, and \bar{x} means degree.
Three types: basic, Cartan type, and strange (two families: periplectic and queer).

Lie superalgebras

A Lie superalgebra is a \mathbb{Z}_{2}-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket

$$
[,]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}
$$

satisfying

$$
[x, y]=-(-1)^{\bar{x} \bar{y}}[y, x]
$$

and

$$
[x,[y, z]]]=[[x, y], z]+(-1)^{\bar{x} \bar{y}}[y,[x, z]],
$$

where x, y, z are each homogeneous, and \bar{x} means degree.
Three types: basic, Cartan type, and strange (two families: periplectic and queer).
Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.

Lie superalgebras

A Lie superalgebra is a \mathbb{Z}_{2}-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket

$$
[,]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}
$$

satisfying

$$
[x, y]=-(-1)^{\bar{x} \bar{y}}[y, x]
$$

and

$$
[x,[y, z]]]=[[x, y], z]+(-1)^{\bar{x} \bar{y}}[y,[x, z]],
$$

where x, y, z are each homogeneous, and \bar{x} means degree.
Three types: basic, Cartan type, and strange (two families: periplectic and queer).
Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.
The general linear Lie superalgebra is

$$
\mathfrak{g l}(m \mid n)=\operatorname{End}(V)
$$

Lie superalgebras

A Lie superalgebra is a \mathbb{Z}_{2}-graded vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a super Lie bracket [,]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying a super symmetry and super Jacobi identity.
Three types: basic, Cartan type, and strange (two families: periplectic and queer).
Let $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ be a \mathbb{Z}_{2}-graded vector space over \mathbb{C}.
For (homogeneous) $v \in V_{i}$, write $\bar{v}=i$ for its degree.
The general linear Lie superalgebra is

$$
\mathfrak{g l}(m \mid n)=\operatorname{End}(V)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}
$$

where

$$
\begin{gathered}
\mathfrak{g}_{0}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right) \right\rvert\, A \in \operatorname{End}\left(V_{0}\right), D \in \operatorname{End}\left(V_{1}\right)\right\} \\
\mathfrak{g}_{1}=\left\{\left.\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right) \right\rvert\, B \in \operatorname{Hom}\left(V_{1}, V_{0}\right), C \in \operatorname{Hom}\left(V_{0}, V_{1}\right)\right\} .
\end{gathered}
$$

Bracket: $[x, y]=x y-(-1)^{\bar{x} \bar{y}} y x$.

Lie superalgebras

Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be a nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

Lie superalgebras

Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be a nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

Then

$$
\mathfrak{g}=\left\{x \in \operatorname{End}(V) \mid \beta(x u, v)+(-1)^{\bar{x} \bar{u}} \beta(v, x u)\right\}
$$

is a Lie superalgebra (\mathbb{Z}_{2}-graded). For example, if β is even, $\mathfrak{g}=\mathfrak{o s p}(V)$ the orthosymplectic Lie superalgebra (if $V_{1}=0$, $\mathfrak{g}=\mathfrak{s o}(V)$; and if $V_{0}=0, \mathfrak{g}=\mathfrak{s p}(V)$).

Lie superalgebras

Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be a nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

Then

$$
\mathfrak{g}=\left\{x \in \operatorname{End}(V) \mid \beta(x u, v)+(-1)^{\bar{x} \bar{u}} \beta(v, x u)\right\}
$$

is a Lie superalgebra (\mathbb{Z}_{2}-graded). For example, if β is even, $\mathfrak{g}=\mathfrak{o s p}(V)$ the orthosymplectic Lie superalgebra (if $V_{1}=0$, $\mathfrak{g}=\mathfrak{s o}(V)$; and if $V_{0}=0, \mathfrak{g}=\mathfrak{s p}(V)$).

If β is odd, then \mathfrak{g} is the periplectic Lie superalgebra,

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

Lie superalgebras

Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be a nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

Then

$$
\mathfrak{g}=\left\{x \in \operatorname{End}(V) \mid \beta(x u, v)+(-1)^{\bar{x} \bar{u}} \beta(v, x u)\right\}
$$

is a Lie superalgebra (\mathbb{Z}_{2}-graded). For example, if β is even, $\mathfrak{g}=\mathfrak{o s p}(V)$ the orthosymplectic Lie superalgebra (if $V_{1}=0$, $\mathfrak{g}=\mathfrak{s o}(V)$; and if $V_{0}=0, \mathfrak{g}=\mathfrak{s p}(V)$).

If β is odd, then \mathfrak{g} is the periplectic Lie superalgebra,

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

Specifically, we have

$$
\mathfrak{p}(n) \cong\left\{\left.\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right) \in \mathfrak{g l}(n \mid n) \right\rvert\, B=B^{t}, C=-C^{t}\right\} .
$$

Lie superalgebras

Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be a nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

If β is odd, then \mathfrak{g} is the periplectic Lie superalgebra,

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

Specifically, we have

$$
\mathfrak{p}(n) \cong\left\{\left.\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right) \in \mathfrak{g l}(n \mid n) \right\rvert\, B=B^{t}, C=-C^{t}\right\} .
$$

Then, as vector spaces $\mathfrak{p}(n)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{-1}$, where

$$
\begin{gathered}
\mathfrak{g}_{0}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & -A^{t}
\end{array}\right)\right\} \cong \mathfrak{g l}(n) \\
\mathfrak{g}_{1}=\left\{\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{-1}=\left\{\left(\begin{array}{ll}
0 & 0 \\
C & 0
\end{array}\right)\right\} .
\end{gathered}
$$

Lie superalgebras

Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be a nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

If β is odd, then \mathfrak{g} is the periplectic Lie superalgebra,

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

Specifically, we have

$$
\mathfrak{p}(n) \cong\left\{\left.\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right) \in \mathfrak{g l}(n \mid n) \right\rvert\, B=B^{t}, C=-C^{t}\right\} .
$$

Then, as vector spaces $\mathfrak{p}(n)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{-1}$, where

$$
\begin{gathered}
\mathfrak{g}_{0}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & -A^{t}
\end{array}\right)\right\} \cong \mathfrak{g l}(n) \\
\mathfrak{g}_{1}=\left\{\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{-1}=\left\{\left(\begin{array}{ll}
0 & 0 \\
C & 0
\end{array}\right)\right\} .
\end{gathered}
$$

Goal: Study the representation theory of $\mathfrak{p}(n)$.

Lie superalgebras

Let $\beta: V \otimes V \rightarrow \mathbb{C}$ be a nondegenerate, homogeneous, bilinear form satisfying

$$
\beta(v, w)=(-1)^{\bar{v} \bar{w}} \beta(w, v) \quad \text { (supersymmetric). }
$$

If β is odd, then \mathfrak{g} is the periplectic Lie superalgebra,

$$
\mathfrak{p}(V)=\mathfrak{p}(n)=\left\{x \in \operatorname{End}(V) \mid \beta(x v, w)+(-1)^{\bar{x} \bar{v}} \beta(v, x w)=0\right\} .
$$

Specifically, we have

$$
\mathfrak{p}(n) \cong\left\{\left.\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right) \in \mathfrak{g l}(n \mid n) \right\rvert\, B=B^{t}, C=-C^{t}\right\} .
$$

Then, as vector spaces $\mathfrak{p}(n)=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{-1}$, where

$$
\begin{gathered}
\mathfrak{g}_{0}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & -A^{t}
\end{array}\right)\right\} \cong \mathfrak{g l}(n) \\
\mathfrak{g}_{1}=\left\{\left(\begin{array}{cc}
0 & B \\
0 & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{-1}=\left\{\left(\begin{array}{cc}
0 & 0 \\
C & 0
\end{array}\right)\right\} .
\end{gathered}
$$

Goal: Study the representation theory of $\mathfrak{p}(n)$. In particular, study the category \mathcal{F}_{n} of finite-dimensional integrable representations (a "highest weight category").

Translation functors

Key ingredients for other cases: a large center in $\mathcal{U} \mathfrak{g}$, and translation functors given by tensoring with the natural representation followed by the projection onto a block (given by eigenvalues of y_{i} 's).

Translation functors

Key ingredients for other cases: a large center in $\mathcal{U} \mathfrak{g}$, and translation functors given by tensoring with the natural representation followed by the projection onto a block (given by eigenvalues of y_{i} 's).
Namely, you study the action of $\mathcal{U g}$ on

$$
M \otimes V \otimes V \otimes \cdots \otimes V=M \otimes V^{\otimes d}
$$

where V is \mathfrak{g} 's favorite module, and M is another simple module, by constructing operators in $\operatorname{End}_{\mathfrak{g}}\left(M \otimes V^{\otimes d}\right)$ that commute with the \mathfrak{g}-action. Many commuting operators are generated by taking coproducts of central elements (again, like y_{i} 's).

Translation functors

Key ingredients for other cases: a large center in $\mathcal{U} \mathfrak{g}$, and translation functors given by tensoring with the natural representation followed by the projection onto a block (given by eigenvalues of y_{i} 's).

Namely, you study the action of $\mathcal{U g}$ on

$$
M \otimes V \otimes V \otimes \cdots \otimes V=M \otimes V^{\otimes d}
$$

where V is \mathfrak{g} 's favorite module, and M is another simple module, by constructing operators in $\operatorname{End}_{\mathfrak{g}}\left(M \otimes V^{\otimes d}\right)$ that commute with the \mathfrak{g}-action. Many commuting operators are generated by taking coproducts of central elements (again, like y_{i} 's).

Examples: If $\mathfrak{g}=\mathfrak{s o}(V)$ or $\mathfrak{s p}(V)$, then the commuting operators generate the graded Brauer algebra; when $\mathfrak{g}=\mathfrak{s l}(V)$, you get the "graded Hecke algebra of type A".

Translation functors

Key ingredients for other cases: a large center in $\mathcal{U} \mathfrak{g}$, and translation functors given by tensoring with the natural representation followed by the projection onto a block (given by eigenvalues of y_{i} 's).

Namely, you study the action of $\mathcal{U g}$ on

$$
M \otimes V \otimes V \otimes \cdots \otimes V=M \otimes V^{\otimes d}
$$

where V is \mathfrak{g} 's favorite module, and M is another simple module, by constructing operators in $\operatorname{End}_{\mathfrak{g}}\left(M \otimes V^{\otimes d}\right)$ that commute with the \mathfrak{g}-action. Many commuting operators are generated by taking coproducts of central elements (again, like y_{i} 's).

Examples: If $\mathfrak{g}=\mathfrak{s o}(V)$ or $\mathfrak{s p}(V)$, then the commuting operators generate the graded Brauer algebra; when $\mathfrak{g}=\mathfrak{s l}(V)$, you get the "graded Hecke algebra of type A".

Obstruction: The center of $\mathcal{U} \mathfrak{p}(V)$ is trivial! But we'll figure it out anyway...

Example: $V \otimes V$

Recall: $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ is a \mathbb{Z}_{2}-graded vector space over \mathbb{C}. For (homogeneous) $v \in V_{i}$, write $\bar{v}=i$ for its degree.

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{\bar{v} \bar{w}} w \otimes v, \quad$ and $\quad e=\beta^{*} \beta: v \otimes w \mapsto \beta(v, w) c$, where c spans the (super) sign module.

Example: $V \otimes V$

Recall: $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ is a \mathbb{Z}_{2}-graded vector space over \mathbb{C}. For (homogeneous) $v \in V_{i}$, write $\bar{v}=i$ for its degree.

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{\bar{v} \bar{w}} w \otimes v, \quad$ and $\quad e=\beta^{*} \beta: v \otimes w \mapsto \beta(v, w) c$, where c spans the (super) sign module.

Draw:

$$
s=X \text { and } \quad e=
$$

Example: $V \otimes V$

Recall: $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ is a \mathbb{Z}_{2}-graded vector space over \mathbb{C}. For (homogeneous) $v \in V_{i}$, write $\bar{v}=i$ for its degree.

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{\bar{v} \bar{w}} w \otimes v, \quad$ and $\quad e=\beta^{*} \beta: v \otimes w \mapsto \beta(v, w) c$, where c spans the (super) sign module.

Draw:

$$
s=X \text { and } \quad e=
$$

Relation: $e \circ s=e=-s \circ e$.

Example: $V \otimes V$

Recall: $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ is a \mathbb{Z}_{2}-graded vector space over \mathbb{C}. For (homogeneous) $v \in V_{i}$, write $\bar{v}=i$ for its degree.

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{\bar{v} \bar{w}} w \otimes v, \quad$ and $\quad e=\beta^{*} \beta: v \otimes w \mapsto \beta(v, w) c$, where c spans the (super) sign module.

Draw:

$$
s=X \text { and } e=\text { (signed Brauer) }
$$

Relation: $e \circ s=e=-s \circ e$.

Example: $V \otimes V$

Recall: $V=V_{0} \oplus V_{1}=\mathbb{C}^{m \mid n}$ is a \mathbb{Z}_{2}-graded vector space over \mathbb{C}. For (homogeneous) $v \in V_{i}$, write $\bar{v}=i$ for its degree.

The algebra $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V)$ is 3-dimensional with basis 1, $s: v \otimes w \mapsto(-1)^{\bar{v} \bar{w}} w \otimes v, \quad$ and $\quad e=\beta^{*} \beta: v \otimes w \mapsto \beta(v, w) c$, where c spans the (super) sign module.

Draw:

$$
s=X \text { and } e=\text { (signed Brauer) }
$$

Relation: $e \circ s=e=-s \circ e$. Also, $e^{2}=0$. (non-semisimple case)
(Kujawa-Tharp 2014) The marked Brauer algebra $B_{k}(\delta, \epsilon)$, $\epsilon= \pm 1$, is the space spanned by marked Brauer diagrams

caps get one \diamond each, cups get one \triangleright or \triangleleft each, no two markings at same height.
with equivalence up to isotopy except for the local relations

for any adjacent markings © and (2) (meaning no markings of height between these two).
(Kujawa-Tharp 2014) The marked Brauer algebra $B_{k}(\delta, \epsilon)$, $\epsilon= \pm 1$, is the space spanned by marked Brauer diagrams

caps get one \diamond each,
cups get one \triangleright or \triangleleft each, no two markings at same height.
with equivalence up to isotopy except for the local relations

and -x-
-(2)-
for any adjacent markings © and (2) (meaning no markings of height between these two). Again, multiplication is given by vertical concatenation, with relations $\bigcirc=\delta$,

$$
\Delta \Delta=\square
$$

$$
\boldsymbol{\sim}=\epsilon \rightarrow=\Delta
$$

For example,

$$
\begin{aligned}
& \triangle=\epsilon \rightarrow \text { - © } \triangle \text { - } \\
& \text { 乌 }=\epsilon \boxtimes \text {-(2)- }=\epsilon \text { - } \\
& \bigcirc=\delta
\end{aligned}
$$

For example,

$$
\begin{aligned}
& \triangle=\epsilon \longrightarrow \text {-(『) } \\
& \text { \& }=6 \boxtimes \text {-(2)- }=\epsilon \text { - } \\
& \bigcirc=\delta
\end{aligned}
$$

For example,

$$
\begin{aligned}
& \triangle=\epsilon \triangle \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \bigcirc=\delta
\end{aligned}
$$

$$
\leadsto \Delta=\square \Delta \Delta=\omega \rightarrow \Delta
$$

For example,

Alternatively,

$$
\begin{aligned}
& \triangle=\epsilon \longrightarrow \text {-(®) } \\
& \square=\epsilon \boxtimes \text {-(2)- }=\epsilon \text { - } \\
& \bigcirc=\delta
\end{aligned}
$$

For example,

Alternatively,

$$
\begin{aligned}
& \triangle=\epsilon \longrightarrow \text { - © } \\
& \text { 乌 }=\epsilon \boxtimes \text {-(2)- }=\epsilon \text { - } \\
& \bigcirc=\delta
\end{aligned}
$$

For example,

Alternatively,

$$
\begin{aligned}
& \triangle=\epsilon \longrightarrow \text { - © } \\
& \text { 乌 }=6 \boxtimes \text {-(2)- }=\epsilon \\
& \bigcirc=\delta
\end{aligned}
$$

(Kujawa-Tharp 2014) The marked Brauer algebra $B_{k}(\delta, \epsilon)$, $\epsilon= \pm 1$, is the space spanned by marked Brauer diagrams

caps get one \diamond each,
cups get one \triangleright or \varangle each, no two markings at same height.
with equivalence up to isotopy except for the local relations

and

-(y)-
for any adjacent markings © and (4) (meaning no markings of height between these two). Again, multiplication is given by vertical concatenation, with relations $\bigcirc=\delta$,

Note:
(1) $B_{k}(\delta, 1)=B_{k}(\delta)$.
(2) If $\epsilon=-1$, then multiplication is well-defined exactly when $\delta=0$.

The marked Brauer algebra $B_{k}(\delta, \epsilon)$ is generated by

$$
s_{i}=\left|\cdots \chi^{i+1} \cdots\right| \text { and } e_{i}=|\cdots \underbrace{i+1}_{\sim} \cdots|
$$

for $i=1, \ldots, k-1$, with relations exactly analogous to those for the Brauer algebra, with some ϵ 's.

The marked Brauer algebra $B_{k}(\delta, \epsilon)$ is generated by

$$
s_{i}=\lceil\cdots \chi^{i+1} \cdots \mid \text { and } e_{i}=|\cdots \underbrace{i+1}_{\sim} \cdots|
$$

for $i=1, \ldots, k-1$, with relations exactly analogous to those for the Brauer algebra, with some ϵ 's.

Back to Lie superalgebras: $V=V_{0} \oplus V_{1}$, let $\beta: V \otimes V \rightarrow \mathbb{C}$ be a non-degenerate, homogeneous, bilinear form on V, and let \mathfrak{g} be the corresponding β-invariant Lie superalgebra.

The marked Brauer algebra $B_{k}(\delta, \epsilon)$ is generated by

$$
\left.s_{i}=\right\rceil \cdots \sum^{i} \cdots \sum_{0}^{i+1} \text { and } e_{i}=\mid \cdots \underbrace{i+1}_{\infty} \cdots
$$

for $i=1, \ldots, k-1$, with relations exactly analogous to those for the Brauer algebra, with some ϵ 's.

Back to Lie superalgebras: $V=V_{0} \oplus V_{1}$, let $\beta: V \otimes V \rightarrow \mathbb{C}$ be a non-degenerate, homogeneous, bilinear form on V, and let \mathfrak{g} be the corresponding β-invariant Lie superalgebra. Then with

$$
\begin{aligned}
\beta^{*}: \mathbb{C} \rightarrow V \otimes V \quad \text { and } \quad s: V \otimes V & \rightarrow V \otimes V \\
u \otimes v & \mapsto(-1)^{\bar{u} \bar{v}} v \otimes u
\end{aligned}
$$

the map

$$
e_{i} \mapsto 1^{\otimes i-1} \otimes \beta^{*} \beta \otimes 1^{k-i-1}, \quad s_{i} \mapsto 1^{\otimes i-1} \otimes s \otimes 1^{k-i-1}
$$

for $i=1, \ldots, k-1$, gives

$$
B_{k}(\delta, \epsilon) \rightarrow \operatorname{End}_{\mathfrak{g}}\left(V^{\otimes k}\right)
$$

when $\delta=\operatorname{dim} V_{0}-\operatorname{dim} V_{1}$ and $\epsilon=(-1)^{\bar{\beta}}$ [KT14].

Jucys-Murphy elements for $B_{k}(\delta, \epsilon)$

For the marked Brauer algebra,

$$
x_{j}=\mathrm{constant}+\sum_{i=1}^{j-1} s_{i, j}-e_{i, j}, \quad c \in \mathbb{C}, j=1, \ldots, k,
$$

are still the Jucys-Murphy elements. So we define the graded version similarly, with ϵ 's where needed,

$$
\mathcal{B}_{k}(\delta, \epsilon)=\mathbb{C}\left[y_{1}, \ldots, y_{k}\right] \otimes B_{k}(\delta, \epsilon) /\left\langle y_{i} \text {-relations }\right\rangle
$$

Namely, if we draw

$$
\left.\left.\left.y_{i}=\downharpoonright \cdots\right\rfloor \text { @ }\right\rfloor \cdots\right\rfloor
$$

then

$$
11+x=x+\infty
$$

Jucys-Murphy elements for $B_{k}(\delta, \epsilon)$

We define the graded version similarly, with ϵ 's where needed,

$$
\mathcal{B}_{k}(\delta, \epsilon)=\mathbb{C}\left[y_{1}, \ldots, y_{k}\right] \otimes B_{k}(\delta, \epsilon) /\left\langle y_{i} \text {-relations }\right\rangle
$$

Namely, if we draw

$$
\left.y_{i}=\right\rceil \cdots\left\lceil{ }^{i} \downarrow\right\rfloor \cdots
$$

then

$$
i d-K=X+\infty
$$

Questions: For $\mathcal{B}_{k}(0,-1)$,
(1) what tensor space do we want analogous to $M \otimes V^{\otimes k}$?
(2) what's the action of the y_{i} 's?

Jucys-Murphy elements for $B_{k}(\delta, \epsilon)$

We define the graded version similarly, with ϵ 's where needed,

$$
\mathcal{B}_{k}(\delta, \epsilon)=\mathbb{C}\left[y_{1}, \ldots, y_{k}\right] \otimes B_{k}(\delta, \epsilon) /\left\langle y_{i} \text {-relations }\right\rangle
$$

Namely, if we draw

$$
\left.\left.y_{i}=\right\rceil \cdots\left\lceil{ }^{i} \downarrow\right\rfloor \cdots\right\rceil
$$

then

$$
1-\infty=X+\infty
$$

Questions: For $\mathcal{B}_{k}(0,-1)$,
(1) what tensor space do we want analogous to $M \otimes V^{\otimes k}$?
(2) what's the action of the y_{i} 's?

Start with (2): $\mathfrak{p}(V)$ has trivial center! Namely, if Γ is a basis of $\mathfrak{p}(V)$, then $\mathfrak{p}(V)$ does not contain a dual basis with respect to β.

Sneaky split Casimir

$$
\mathcal{B}_{k}(\delta, \epsilon)=\mathbb{C}\left[y_{1}, \ldots, y_{k}\right] \otimes B_{k}(\delta, \epsilon) /\left\langle y_{i} \text {-relations }\right\rangle
$$

Questions: For $B_{k}(0,-1)$,
(1) what tensor space do we want analogous to $M \otimes V^{\otimes k}$?
(2) what's the action of the y_{i} 's?

Start with (2): $\mathfrak{p}(V)$ has trivial center! Namely, if Γ is a basis of $\mathfrak{p}(V)$, then $\mathfrak{p}(V)$ does not contain a dual basis with respect to β. In particular, considering $\mathfrak{p}(V) \subseteq \mathfrak{g l}(V)$, then $\left\{b^{*} \mid b \in \Gamma\right\}$ is a basis for $\mathfrak{p}(V)^{\perp} \subseteq \mathfrak{g l}(V)$. So

$$
\gamma=\sum_{b \in \Gamma} b \otimes b^{*} \in U \mathfrak{p}(V) \otimes U \mathfrak{p}(V)^{\perp}
$$

Sneaky split Casimir

$$
\mathcal{B}_{k}(\delta, \epsilon)=\mathbb{C}\left[y_{1}, \ldots, y_{k}\right] \otimes B_{k}(\delta, \epsilon) /\left\langle y_{i} \text {-relations }\right\rangle
$$

Questions: For $B_{k}(0,-1)$,
(1) what tensor space do we want analogous to $M \otimes V^{\otimes k}$?
(2) what's the action of the y_{i} 's?

Start with (2): $\mathfrak{p}(V)$ has trivial center! Namely, if Γ is a basis of $\mathfrak{p}(V)$, then $\mathfrak{p}(V)$ does not contain a dual basis with respect to β. In particular, considering $\mathfrak{p}(V) \subseteq \mathfrak{g l}(V)$, then $\left\{b^{*} \mid b \in \Gamma\right\}$ is a basis for $\mathfrak{p}(V)^{\perp} \subseteq \mathfrak{g l}(V)$. So

$$
\gamma=\sum_{b \in \Gamma} b \otimes b^{*} \in U \mathfrak{p}(V) \otimes U \mathfrak{p}(V)^{\perp}
$$

However, γ does have a natural action on $M \otimes V$, since V is also a $\mathfrak{g l}(V)$-module. And since it commutes with the action of $\mathfrak{g l}(V)$, it commutes with $\mathfrak{p}(V)$. In particular, as before,

$$
\gamma_{i, j} \text { acts on } V^{\otimes k} \text { as } s_{i, j}-e_{i, j} .
$$

What should M be in $M \otimes V^{\otimes k}$?

Try 1: For the partition λ of size ℓ, take the indecomposable $M(\lambda)$ indexed by λ (the one paired with B^{λ} by Moon, Kujawa-Tharp) in $V^{\otimes \ell}$. Write the action of $\mathcal{B}_{k}(0,-1)$ on $M(\lambda) \otimes V^{\otimes k}$ in terms of the the action of $B_{k}(0,-1)$ on $V^{\otimes \ell+k}$; make an inductive argument.

What should M be in $M \otimes V^{\otimes k}$?

Try 1: For the partition λ of size ℓ, take the indecomposable $M(\lambda)$ indexed by λ (the one paired with B^{λ} by Moon, Kujawa-Tharp) in $V^{\otimes \ell}$. Write the action of $\mathcal{B}_{k}(0,-1)$ on $M(\lambda) \otimes V^{\otimes k}$ in terms of the the action of $B_{k}(0,-1)$ on $V^{\otimes \ell+k}$; make an inductive argument.

Issues:

(a) Not big enough. In $V \otimes V$, the minimal polynomial for γ is $(\gamma-1)(\gamma+1)$. So the image of $\mathcal{B}_{1}(0,-1)$ in $\operatorname{End}(V \otimes V)$ (think $M=V, k=1)$ is at most

$$
\mathcal{B}_{1}(0,-1) /\left\langle\left(y_{1}-1\right)\left(y_{1}+1\right)\right\rangle \quad(\operatorname{dim}=2) .
$$

But $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V) \cong B_{2}(0,-1)(\operatorname{dim}=3)$.

What should M be in $M \otimes V^{\otimes k}$?

Try 1: For the partition λ of size ℓ, take the indecomposable $M(\lambda)$ indexed by λ (the one paired with B^{λ} by Moon, Kujawa-Tharp) in $V^{\otimes \ell}$. Write the action of $\mathcal{B}_{k}(0,-1)$ on $M(\lambda) \otimes V^{\otimes k}$ in terms of the the action of $B_{k}(0,-1)$ on $V^{\otimes \ell+k}$; make an inductive argument.

Issues:

(a) Not big enough. In $V \otimes V$, the minimal polynomial for γ is $(\gamma-1)(\gamma+1)$. So the image of $\mathcal{B}_{1}(0,-1)$ in $\operatorname{End}(V \otimes V)$ (think $M=V, k=1)$ is at most

$$
\mathcal{B}_{1}(0,-1) /\left\langle\left(y_{1}-1\right)\left(y_{1}+1\right)\right\rangle \quad(\operatorname{dim}=2) .
$$

But $\operatorname{End}_{\mathfrak{p}(V)}(V \otimes V) \cong B_{2}(0,-1)(\operatorname{dim}=3)$.
(b) Non-semisimple actions. In $V \otimes V=\operatorname{Sym}^{2} V \oplus \bigwedge^{2} V$,

$$
e_{1}: \operatorname{Sym}^{2} V \xrightarrow{\beta} \mathbb{C} \xrightarrow{\beta^{*}} \bigwedge^{2}(V)
$$

has non-trivial image. So, for example, the action of $B_{3}(0,-1)$ on $V^{\otimes 3}$ does not restrict to a closed action on $\left(\mathrm{Sym}^{2} V\right) \otimes V$.

What should M be in $M \otimes V^{\otimes k}$?

Try 1: $M(\lambda) \otimes V^{\otimes k} \subseteq V^{\otimes|\lambda|+k}$ (nope)
Try 2: Induce $\mathfrak{g l}(V)=\mathfrak{g}_{0}$ modules $L(\lambda)$ up to $\mathfrak{p}(V)$. Again, the dimensions to not match.

What should M be in $M \otimes V^{\otimes k}$?

Try 1: $M(\lambda) \otimes V^{\otimes k} \subseteq V^{\otimes|\lambda|+k}$ (nope)
Try 2: Induce $\mathfrak{g l}(V)=\mathfrak{g}_{0}$ modules $L(\lambda)$ up to $\mathfrak{p}(V)$. Again, the dimensions to not match.

Try 3: Kac modules of two types: $K(\lambda)$ (thin) and $\tilde{K}(\lambda)$ (thick).

What should M be in $M \otimes V^{\otimes k}$?

Try 1: $M(\lambda) \otimes V^{\otimes k} \subseteq V^{\otimes|\lambda|+k}$ (nope)
Try 2: Induce $\mathfrak{g l}(V)=\mathfrak{g}_{0}$ modules $L(\lambda)$ up to $\mathfrak{p}(V)$. Again, the dimensions to not match.

Try 3: Kac modules of two types: $K(\lambda)$ (thin) and $\tilde{K}(\lambda)$ (thick). Let $\phi=\sum_{\text {neg. roots } \alpha} \alpha$ (like the staircase partition) and let $V(\lambda)$ be the simple \mathfrak{g}_{0}-module of highest weight λ. Define

$$
K(\lambda)=\operatorname{Ind}_{\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}}^{\mathfrak{g}} V(\lambda-\phi) \quad \tilde{K}(\lambda)=\operatorname{Ind}_{\mathfrak{g}_{0} \oplus \mathfrak{g}_{-1}}^{\mathfrak{g}} V(\lambda) .
$$

What should M be in $M \otimes V^{\otimes k}$?

Try 1: $M(\lambda) \otimes V^{\otimes k} \subseteq V^{\otimes|\lambda|+k}$ (nope)
Try 2: Induce $\mathfrak{g l}(V)=\mathfrak{g}_{0}$ modules $L(\lambda)$ up to $\mathfrak{p}(V)$. Again, the dimensions to not match.

Try 3: Kac modules of two types: $K(\lambda)$ (thin) and $\tilde{K}(\lambda)$ (thick). Let $\phi=\sum_{\text {neg. roots } \alpha} \alpha$ (like the staircase partition) and let $V(\lambda)$ be the simple \mathfrak{g}_{0}-module of highest weight λ. Define

$$
K(\lambda)=\operatorname{Ind}_{\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}}^{\mathfrak{g}} V(\lambda-\phi) \quad \tilde{K}(\lambda)=\operatorname{Ind}_{\mathfrak{g}_{0} \oplus \mathfrak{g}_{-1}}^{\mathfrak{g}} V(\lambda) .
$$

Then $K(\lambda) \otimes V \cong M_{1} \oplus \cdots \oplus M_{n}$ where

$$
0 \rightarrow K\left(\lambda+\varepsilon_{i}\right) \rightarrow M_{i} \rightarrow K\left(\lambda-\varepsilon_{i}\right) \rightarrow 0
$$

whenever $\lambda \pm \varepsilon_{i}$ are dominant (add or remove a box to λ), or replace $K(*)$ with 0 whenever they're not (similar statement for \tilde{K}). (Proof uses eigenvalues of γ on $K(\lambda) \otimes V$ and $\tilde{K}(\lambda) \otimes V$, which are combinatorial data in terms of boxes added/removed.)
$K(\lambda) \otimes V \cong M_{1} \oplus \cdots \oplus M_{n}$ where

$$
0 \rightarrow K\left(\lambda+\varepsilon_{i}\right) \rightarrow M_{i} \rightarrow K\left(\lambda-\varepsilon_{i}\right) \rightarrow 0
$$

whenever $\lambda \pm \varepsilon_{i}$ are dominant (add or remove a box to λ), or replace $K(*)$ with 0 whenever they're not (similar statement for \tilde{K}).

Some more results: ([BDEHHILNSS-1\&2])

- Presentation of the graded signed Brauer algebra and related algebras/categories.
- Basis and spanning sets in terms of decorated diagrams.
- Center given by a certain class of symmetric functions.
- Filtrations and specializations similar to the classical cases.
- Action on tensor space and translation functors.
- Translation functors given by actions on "weight diagrams" (akin to spin chain diagrams).
- Algebraic structure: 0-Temperley-Lieb algebra.

With Martina Balagovic, Inna Entova-Aizenbud, Iva Halacheva, Johanna Hennig, Mee Seong Im, Gail Letzter, Emily Norton, Vera Serganova, and Catharina Stroppel:
[1] "Translation functors and Kazhdan-Lusztig multiplicities for the Lie superalgebra $\mathfrak{p}(n)$, Mathematical Research Letters Vol.26, no.3.
[2] "The affine VW supercategory", to appear in Selecta. arXiv:1801.04178 https://zdaugherty.ccnysites.cuny.edu

