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Motivating example: Schur-Weyl Duality
GLn(C) actson C* @ C" @ --- @ C™ = (C™)®* diagonally.
g (1 @U2®- - ®Ug) = gu1 ® gu2 ® -+ @ gug.
S}, also acts on ((C")®k by place permutation.

V2 QU4 ® V1 ®Us ® U

D<K

V1] @ V2 ® V3 @ v4 & s

These actions commute!
gu2 @ gus Q g1 ® gUs @ gus gu2 ® gus @ gu1 ® gus Q gus
VS.

gu1 Q@ gua ® gz @ gua @ gus v ® V2 ® vz @ vy X U5



Motivating example: Schur-Weyl Duality
Consider the representations induced by these commuting actions,
7:CS, — End((C")®*) and p:CGL, — End((C")®").

Thm. (Schur 1901)

Endgr,, ((C”)®k) = 7(CSy) and Endg, ((C")®k) — p(CGLy).
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Motivating example: Schur-Weyl Duality

Consider the representations induced by these commuting actions,
7:CS, — End((C")®*) and p:CGL, — End((C")®").

Thm. (Schur 1901)
Endgr,, ((C”)®k) = 7(CSy) and Endg, ((C")®k) — p(CGLy).

~— ——
(all linear maps that (img of Sk (img of GLy,
commute with GLy,) action) action)

Powerful consequence: a duality between representations
The double-centralizer relationship produces

(C™)®F =~ @ G*® 8" asa GL,-S; bimodule,

Ak
L(AN)<n

where G» are distinct irreducible  GL,,-modules,
SA  are distinct irreducible  Sj;-modules.
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Caution! The representation
7 :CS), — End ((cn)@@k)

is not always injective! ’Thm. ker(m) # 0 when n < k.

Case n = 2: Define
~-11-X
FO Y B '

Then in CSy, (for general k),

O () (130 -
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Temperley-Lieb algebras

Caution! The representation
7 :CS), — End ((cn)@@k)

is not always injective! ’Thm. ker(m) # 0 when n < k.

Case n = 2: Define
~-11-X
FO Y B '

Then in CSy, (for general k),

(1) (2

[ L . .
Because ~, is (2x ) the projection onto the sign representation for Ss.



Temperley-Lieb algebras

Caution! The representation
7 : CSy — End ((C")®k)

is not always injective! ’Thm. ker(m) # 0 when n < k.

Case n = 2: Define

Only true for n < 2:
A A



Temperley-Lieb algebras

Fix 6 € C. The Temperley-Lieb algebra T'Ly is a diagram algebra
generated over C by diagrams

ei:I"' I x I I, fori=1,...,k—1,

i

with relations e;je; = eje; for i — j| > 1,
€i€i+1€; = €; _~ | or _| ~
for1<i<k-1, P - ~ -
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Temperley-Lieb algebras
Fix 6 € C. The Temperley-Lieb algebra T'Ly is a diagram algebra

generated over C by diagrams ‘ Basis: all non-crossing diagrams

ei:I"' I x I I, fori=1,...,k—1,

i

with relations e;je; = eje; for i — j| > 1,
€i€i+1€; = €; ~ ~
= or = *
for 1 <i<hk—1, E}JT ~ | Léj I~ )

2 S —
62-:(51‘61‘. 9:(5,.\

Thm. The quotient of CSj, by relations (x) factors through the
representation

7 €Sy — End ((€)7)

(i.e. when § = 2, T'Lj, centralizes the action of GLg on ((C2)®k).
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Fix ¢ € C, and let U = Uy,g be the Drinfeld-Jimbo quantum group
associated to Lie algebra g (deform the Lie algebra by a parameter q).
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Quantum groups and braids
Fix ¢ € C, and let U = Uy,g be the Drinfeld-Jimbo quantum group
associated to Lie algebra g (deform the Lie algebra by a parameter q).
U @ U has an invertible element R called an R-matrix that yields a map
weV

Ryw: VoW — WV X
VoW

that (1) satisfies braid relations, and
(2) commutes with the U-action on V@ W
for any U-module V.

The one-pole/affine braid group B,E,rl) shares a commuting action
with U on M @ V®F:

A[®V oY V ®V e® V ®V Around the pole:

MoV

— 2 /\ Jg\;v ~ Ry R

:0



Quantum groups and braids

Fix ¢ € C, and let U = Uy,g be the Drinfeld-Jimbo quantum group

associated to Lie algebra g (deform the Lie algebra by a parameter q).

U @ U has an invertible element R called an R-matrix that yields a map
weV

Ryw: VoW — WV X
VoW

that (1) satisfies braid relations, and
(2) commutes with the U-action on V@ W
for any U-module V.

The two-pole braid group B;f) shares a commuting action
with U on M @ V&k @ N

]\[®V®V®V®V®V®N

ﬂ Mgr‘;“nd the pole:
q \ D @ = RuvBRyum

MoV
MeV @ VeV eVeVeN ©



The type-A Hecke algebra is the quotient of the group algebra of the
braid group By by relations

§=<q—q—1>x 11 (+)

Thm. The action of CBy on V®* factors through the quotient by (x)
when V = C" and g = gl,, or sl,.
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The type-A Hecke algebra is the quotient of the group algebra of the
braid group By by relations

§=<q—q—1>x 11 (+)

Thm. The action of CBy on V®* factors through the quotient by (x)
when V = C" and g = gl,, or sl,.

The affine type-G'L;, Hecke algebra is the quotient of the group algebra
of the one-pole braid group B;L,l) by relations (x).

Thm. The action of (CB,(CD on M ® V®F factors through the quotient by
(*) when V' =C" and g = gl,, or sl,.

The affine type-C Hecke algebra is the quotient of the group algebra of
the two-pole braid group B,g) by relations (),

1 ofa 0 .
E:a@.—i—ﬂl and i:b.@+1ﬂ ()

o

Thm. The action of (CB,(CQ) on M ® V& ® N factors through the
quotient by (*) and (*x) when V' =C", M and N are “rectangular”,
and g = gl,, or sl,.



The type-A Hecke algebra is the quotient of the group algebra of the
braid group By by relations

§:<q_ql>x L1l .

é

The affine type-G L, Hecke algebra is the quotient of the group algebra
of the one-pole braid group B,i1> by relations ().

The affine type-C Hecke algebra is the quotient of the group algebra of
the two-pole braid group B,(f> by relations (x),

nJ

» il o
E:a@.—i—ﬂl and i:b.@+1ﬂ ()

“Type what-now?"
Dynkin diagrams:

Type A Affine Type GL Affine Type C



The type-A Hecke algebra is the quotient of the group algebra of the
braid group By by relations

§:(q_ql>x L1l .

é

The affine type-G L, Hecke algebra is the quotient of the group algebra
of the one-pole braid group Bli1> by relations ().

The affine type-C Hecke algebra is the quotient of the group algebra of
the two-pole braid group B,(f> by relations (x),

1 ofa 0 .
E:a@.—i—ﬂl and i:b.@+1ﬂ ()

o

“Type what-now?"
Dynkin diagrams:

Type A Affine Type GL Affine Type C
o—0—:+-—0 O0=—0—0—:—-0 O—=—0—0—- —0=—0



The two-pole/affine type-C braid group is the group B,(f)

generated by Ty, 11, ..., T, with relations

To Tl T2 Tk—2 Tk—l Tk



The two-pole/affine type-C braid group is the group B,(f)

generated by Ty, 11, ..., T, with relations

TO Tl T2 Tk —2 Tk —1 Tk

Pictorially, the generators of B,(f) are identified with the diagrams

s JLTITTS »=& T

and

=[] X ]| feri=ton-n



The two-pole/affine type-C braid group is the group B,(f)

generated by Ty, 71, ..., Tk, with relations

o Tv  Tb Th—o Th—1 Ty

Pictorially,

4 b4
T T, = R\) = (K‘/% = T TiTi



The two-pole/affine type-C braid group is the group B,(f)

generated by Ty, 71, ..., Tk, with relations

o Tv  Tb Th—o Th—1 Ty

Pictorially,

/’ ) %’
LT T, = &/ = / = T TiTi
b {

'Y

ﬂ%’ ”
W1y = & = H'\A = ToThTvTh
I 1P

(similar picture for Tp Ty 1Tk Th—1 = Th—1TkTk—1T%)



Back to Temperley-Lieb algebras

The type-A Hecke algebra H Ay, is the quotient of the group algebra of
the braid group By by relations
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Thm. The action of CBy on V& factors through the quotient by (x)
when V' = C" and g = gl,, or sl,.
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when V' = C" and g = gl,, or sl,.

Case n = 2: Define
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Then in HAy (for general k),
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Back to Temperley-Lieb algebras

The type-A Hecke algebra H Ay, is the quotient of the group algebra of
the braid group By by relations

- 1] (4

Thm. The action of CBy on V& factors through the quotient by (x)
when V' = C" and g = gl,, or sl,.

Case n = 2: Define

2o 1%

Then in HAy (for general k),

(R (1)

2OC



Back to Temperley-Lieb algebras

The type-A Hecke algebra H Ay, is the quotient of the group algebra of
the braid group By by relations

- 1] (4

Thm. The action of CBy on V& factors through the quotient by (x)
when V' = C" and g = gl,, or sl,.

Case n = 2: Define

2o 1%

Then in HAy (for general k),
T B g

2OC



Back to Temperley-Lieb algebras

The type-A Hecke algebra H Ay, is the quotient of the group algebra of the braid

group By, by relations s
§= a-aHX +] ] )

Thm. The action of CBy on V®* factors through the quotient by (¥) when V = C™

and g = gl,, or sl,,.
Z-d1-%

Then in H Ay, (for general k),

L
=] o (e + 1)

Case n = 2: Define



Back to Temperley-Lieb algebras

The type-A Hecke algebra H Ay, is the quotient of the group algebra of the braid

group By, by relations s
§= a-aHX +] ] )

Thm. The action of CBy on V®* factors through the quotient by (¥) when V = C™

and g = gl,, or sl,,.
Z-d1-%

Then in H Ay, (for general k),
N 2 > >V
O- () - (1 1) - K1
=q21 Iqx+<(qql)x +I D =(q+q’l)X~

Because z is (q + q~1)x (proj. onto sign representation for H A5).

Case n = 2: Define



Back to Temperley-Lieb algebras

The type-A Hecke algebra H Ay, is the quotient of the group algebra of
the braid group By by relations

§=<q—q—1>x +1] (+)

Thm. The action of CBy on V®* factors through the quotient by (x)
when V' = C" and g = gl,, or sl,.

Case n = 2: Define

BN

Thm. Using the identification in (¢), the action of H A, on (C2?)®k
factors through the Temperley-Lieb quotient when § = ¢+ ¢! = 2]q,
i.e. TLy centralizes U,gl, and U,sly in End((C?)®*) when O = [2],.



s » . he . a
S=dl-X B ll- 8 Bl
tensor centralizer centralizer centralizer

space of Uyg of Uggl,, of Uggl,

y ek Braids on k strands Type-A Hecke Temperley-Lieb

‘//' (twist relations) I

M@ Ve One-pole braids Affine type-GL Hecke | 1-boundary TL

7/ > (twist relations) K

MV N Two-pole braids Affine type-C Hecke 2-boundary TL

]

Jh—
“7)\. — U

(twist & wrap
relations)

K=




Two-boundary Temperley-Lieb algebras
[MNGBO04] Fix 4, dg, o € C. The two-boundary Temperley-Lieb
algebra TL,(f) is a diagram algebra generated over C by diagrams

BT (IS e ool1210)

fori=1,...,k—1
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Two-boundary Temperley-Lieb algebras
[MNGBO04] Fix 4, dg, o € C. The two-boundary Temperley-Lieb
algebra TL,(f) is a diagram algebra generated over C by diagrams

BT (IS e ool1210)

fori =1,...,k — 1, with relations e;e; = eje; for [i — j| > 1,

€i€i+1€; = €4 ~ IV VI
= or = or =

for 1<i<h—1, g ~ | EA - = =

2 _ S0
e; = die;.




Two-boundary Temperley-Lieb algebras
[MNGBO04] Fix 4, dg, o € C. The two-boundary Temperley-Lieb
algebra TL,(f) is a diagram algebra generated over C by diagrams

BT

1

k

11118 oo

[3

L[]

1

fori =1,...,k — 1, with relations e;e; = eje; for [i — j| > 1,

~
I
- ~
~

€i€i+1€; = €4
for1<:< k-1,

2 _ S0
e; = die;.

or

or

or

b-

5 &

or

B




Two-boundary Temperley-Lieb algebras
[MNGBO04] Fix 4, dg, o € C. The two-boundary Temperley-Lieb
algebra TL,(f) is a diagram algebra generated over C by diagrams

BT (IS e ool1210)

fori =1,...,k — 1, with relations e;e; = eje; for [i — j| > 1,

€i€i+1€; = €4 ~ IV VI
= or = or =

for 1<i<h—1, [,}TJ ~ | EA - I -

612251'62'. §=5: or §=(50$< or §=(Sk>$

(Side loops are resolved with a 1 or a d; depending on whether there are
an even or odd number of connections below their lowest point.)
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Diagram multiplication:

*0 % 1 % 0,

@I NG @ NG N




Diagram multiplication:

In short, TL,(f) has basis given by non-crossing diagrams with

(1) k connections to the top and to the bottom,

(2) an even number of connections to the right and to the left, and
(3) no edges with both ends on the left or both ends on the right.
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Diagram multiplication:

In short, TL,(f) has basis given by non-crossing diagrams with

(1) k connections to the top and to the bottom,

(2) an even number of connections to the right and to the left, and
(3) no edges with both ends on the left or both ends on the right.

However,

eTL?

So unlike the classical T-L algebras, TL,(f)

dimensional! Take quotient giving

is not finite

=z



Representation theory of TL,E?): action on diagrams
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Representation theory of TL,(f): action on diagrams

o
Ay

€1d = = (50



Representation theory of TL,(f): action on diagrams

o
Ay

e1d = = dp ead =



Representation theory of TL,(f): action on diagrams
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A
erd = = dp e4d%| ’



Representation theory of TL,(f): action on diagrams

o
A

erd = = dp e4d%| ’
e

€3€4d =



Representation theory of TL,(f): action on diagrams

AN
e
p——a
€3€4d: % ’
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Representation theory of TL,(f): half diagrams

2
A =

K’
K’ K’
esesd = = Q = ZV |
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or not by the parity of connections to the left/right walls.
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Representation theory of TL,(f): half diagrams

2=
w2 |

K’
K’ K’
esead = = ;é! = Zi// |

You can tell when to use

or not by the parity of connections to the left/right walls.
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(act by e;, don’'t make loops)

2

Generic module: | ea
=
!

Red arrows indicate coef of z.
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Generic module:
(act by e;, don’'t make loops)

Red arrows indicate coef of z.
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(1) The two-boundary (two-pole) braid group By is generated by

i i+l
n ’ J .
Tk:m, Tozﬂ\. and Ti:hl for1<i<k-1,
TO T1 T2 Tk72 kal Tk,

subject to relations O—0—O----- -O—0O—



(1) The two-boundary (two-pole) braid group By is generated by

i i+l
A B
Tk:m, Tozﬂ\. and Ti:x for1<i<k-1,
i i+l

TO Ty T> Tk —2 Tk —1 Tk,

subject to relations O—0—O----- -O—0O—

(2) Fix constants qq, gk, q € C.
The affine type C Hecke algebra Hy, is the quotient of CBj by the
relations

(To—q0)(To+a5 ") =0, (Th —aqr)(Th +q;') =0
and (T, —q)(T;+q ')=0 fori=1,...,k—1.



(1) The two-boundary (two-pole) braid group By is generated by

i i+l
a 4 J .
Tk:m, Tozﬂ\. and Ti:hl for1<i<k-1,
subject to relations g:g_g _____ T’E2 Tgl:Tk :
(2) Fix constants qo,qk,q=q@1 = q2 =+~ = qx—1 € C.
The affine type C Hecke algebra Hy, is the quotient of CBj by the
relations (7; — qil/Q)(Tl- + qi_l/z) = 0.
(3) Set
..... 12
_____ = qo I* . (eo = g0 — To)
...... "
___}_%qul[l - m (ex = qr — Tk)
.m.‘:qII_% (e; =q—Ti)

so that €3 = zje; (for good 2;).



(1) The two-boundary (two-pole) braid group By is generated by

i i+l
N _ _\Y <
Tk_(“’ TO—U\. and Tl—él for1<i<k-1,
. . Th—o T
subject to relations g:g_g _____ kOQ kol_T’“ :
(2) Fix constants qo,qk,q=q@1 = q2 =+~ = qx—1 € C.
The affine type C Hecke algebra Hy, is the quotient of CBj by the

relations (T; — qil/Q)(Tz' + qi—1/2) =0.

(3) Set
K 4o ﬂ I - K (eo = qo — To)

...... kuﬂ _ﬁ (ex = qr — Ti)

.m.‘:qII_% (e; =q—Ti)
so that €3 = zje; (for good 2;).

The two-boundary Temperley-Lieb algebra is the quotient of Hy, by the
relations e;e;41e; = e; fori=1,..., k — 1.

I
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One advantage of using braids:
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Representation theory of H;
The representations of H;, are indexed by pairs (c, J), where
c is a point in the fundamental chamber of
the (finite) type C hyperplane system, and
J is a set of choices of positive/negative sides of

other distinguished hyperplanes intersecting c
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The r;s depend on H;,'s parameters go and qi: 71 = log,(qo/qx), r2 = log,(qoqx)-
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A little more detail

e J is determined by a set of positive roots (corresp. to hyperplanes).

e For “nice” characters, there is a bijection between alcoves and marked
type-C generalized Young tableaux.

e ‘“Intertwining operators” 7; move between alcoves;
dotted lines correspond to 7; = 0.
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A little more detail

e J is determined by a set of positive roots (corresp. to hyperplanes).

e For “nice” characters, there is a bijection between alcoves and marked
type-C generalized Young tableaux.

e ‘“Intertwining operators” 7; move between alcoves;
dotted lines correspond to 7; = 0.
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(1) Representations of H;, are indexed by pairs (c, J).
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Thm. (D.-Ram)
(1) Representations of Hj, are indexed by pairs (c, J).

(2) The representations of #, that factor through the
Temperley-Lieb quotient are as above.
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(2) The representations of #, that factor through the
Temperley-Lieb quotient are as above.
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See also...
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