
Combinatorics and representation theory of
Temperley-Lieb algebras

Zajj Daugherty

The City College of New York

& CUNY Graduate Center

October 1, 2019



Motivating example: Schur-Weyl Duality

The symmetric group Sk (permutations) as diagrams:
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Motivating example: Schur-Weyl Duality

GLn(C) acts on Cn ⊗ Cn ⊗ · · · ⊗ Cn = (Cn)⊗k diagonally.

g · (v1 ⊗ v2 ⊗ · · · ⊗ vk) = gv1 ⊗ gv2 ⊗ · · · ⊗ gvk.

Sk also acts on (Cn)⊗k by place permutation.

v1 v2 v3 v4 v5

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

v2 v4 v1 v5 v3

These actions commute!

gv1 gv2 gv3 gv4 gv5

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

gv2 gv4 gv1 gv5 gv3

vs.

v1 v2 v3 v4 v5

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

gv2 gv4 gv1 gv5 gv3
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Motivating example: Schur-Weyl Duality
Consider the representations induced by these commuting actions,

π : CSk → End((Cn)
⊗k

) and ρ : CGLn → End((Cn)
⊗k

).

Thm. (Schur 1901)

EndGLn

(
(Cn)⊗k

)
︸ ︷︷ ︸
(all linear maps that
commute with GLn)

= π(CSk)︸ ︷︷ ︸
(img of Sk
action)

and EndSk

(
(Cn)⊗k

)
= ρ(CGLn)︸ ︷︷ ︸

(img of GLn
action)

.

Powerful consequence: a duality between representations

The double-centralizer relationship produces

(Cn)⊗k ∼=
⊕
λ`k

`(λ)≤n

Gλ ⊗ Sλ as a GLn-Sk bimodule,

where
Gλ are distinct irreducible GLn-modules,
Sλ are distinct irreducible Sk-modules.



Motivating example: Schur-Weyl Duality
Consider the representations induced by these commuting actions,

π : CSk → End((Cn)
⊗k

) and ρ : CGLn → End((Cn)
⊗k

).

Thm. (Schur 1901)

EndGLn

(
(Cn)⊗k

)
︸ ︷︷ ︸
(all linear maps that
commute with GLn)

= π(CSk)︸ ︷︷ ︸
(img of Sk
action)

and EndSk

(
(Cn)⊗k

)
= ρ(CGLn)︸ ︷︷ ︸

(img of GLn
action)

.

Powerful consequence: a duality between representations

The double-centralizer relationship produces

(Cn)⊗k ∼=
⊕
λ`k

`(λ)≤n

Gλ ⊗ Sλ as a GLn-Sk bimodule,

where
Gλ are distinct irreducible GLn-modules,
Sλ are distinct irreducible Sk-modules.



Temperley-Lieb algebras

Caution! The representation

π : CSk → End
(

(Cn)⊗k
)

is not always injective! Thm. ker(π) 6= 0 when n < k.

Case n = 2: Define

= − .

Then in CSk (for general k),

=

( )2

=

(
−

)2

= − − +

= 2

(
−

)
= 2

( )
.

Because is (2×) the projection onto the sign representation for S2.
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Temperley-Lieb algebras

Caution! The representation

π : CSk → End
(

(Cn)⊗k
)

is not always injective! Thm. ker(π) 6= 0 when n < k.

Case n = 2: Define

= − .

Only true for n ≤ 2:

− ∈ ker(π) − ∈ ker(π)



Temperley-Lieb algebras
Fix δ ∈ C. The Temperley-Lieb algebra TLk is a diagram algebra
generated over C by diagrams

Basis: all non-crossing diagrams

ei =

i

i

· · · · · · , for i = 1, . . . , k − 1,

with relations eiej = ejei for |i− j| > 1,

eiei±1ei = ei
for 1 ≤ i ≤ k − 1,

= or =

(?)

e2i = δiei. = δ

Thm. The quotient of CSk by relations (?) factors through the
representation

π : CSk → End
((

C2
)⊗k)

(i.e. when δ = 2, TLk centralizes the action of GL2 on
(
C2
)⊗k

).
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Quantum groups and braids
Fix q ∈ C, and let U = Uqg be the Drinfeld-Jimbo quantum group
associated to Lie algebra g (deform the Lie algebra by a parameter q).

U ⊗ U has an invertible element R called an R-matrix that yields a map

ŘVW : V ⊗W −→W ⊗ V
W ⊗ V

V ⊗W
that (1) satisfies braid relations, and

(2) commutes with the U-action on V ⊗W
for any U-module V .

The braid group Bk shares a commuting action
with U on V ⊗k:

V

V ⊗

⊗ V

V ⊗

⊗ V

V ⊗

⊗ V

V ⊗

⊗ V

V

M⊗

M⊗

⊗N

⊗N

Around the pole:

M⊗V

M⊗V

= ŘMV ŘVM
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ŘVW : V ⊗W −→W ⊗ V
W ⊗ V

V ⊗W
that (1) satisfies braid relations, and

(2) commutes with the U-action on V ⊗W
for any U-module V .

The braid group Bk shares a commuting action
with U on V ⊗k:

V

V ⊗

⊗ V

V ⊗

⊗ V

V ⊗

⊗ V

V ⊗

⊗ V

V

M⊗

M⊗

⊗N

⊗N

Around the pole:

M⊗V

M⊗V
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The type-A Hecke algebra is the quotient of the group algebra of the
braid group Bk by relations

= (q − q−1) + . (∗)

Thm. The action of CBk on V ⊗k factors through the quotient by (∗)
when V = Cn and g = gln or sln.

The affine type-GLk Hecke algebra is the quotient of the group algebra

of the one-pole braid group B(1)k by relations (∗).

Thm. The action of CB(1)
k on M ⊗ V ⊗k factors through the quotient by

(∗) when V = Cn and g = gln or sln.

The affine type-C Hecke algebra is the quotient of the group algebra of

the two-pole braid group B(2)k by relations (∗),

= a + and = b + (∗∗)

Thm. The action of CB(2)
k on M ⊗ V ⊗k ⊗N factors through the

quotient by (∗) and (∗∗) when V = Cn, M and N are “rectangular”,
and g = gln or sln.

“Type what-now?”
Dynkin diagrams:

· · ·
Type A

· · ·
Affine Type GL

· · ·
Affine Type C
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The two-pole/affine type-C braid group is the group B(2)k
generated by T0, T1, . . . , Tk, with relations

T0 T1 T2 Tk−2 Tk−1 Tk
· · ·

Pictorially, the generators of B(2)k are identified with the diagrams

Tk = , T0 = ,

and

Ti =

i

i

i+1

i+1

for i = 1, . . . , k − 1.
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(similar picture for TkTk−1TkTk−1 = Tk−1TkTk−1Tk)
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Back to Temperley-Lieb algebras
The type-A Hecke algebra HAk is the quotient of the group algebra of
the braid group Bk by relations

= (q − q−1) + . (∗)

Thm. The action of CBk on V ⊗k factors through the quotient by (∗)
when V = Cn and g = gln or sln.

Case n = 2: Define

= q − . (�)

Then in HAk (for general k),

=

( )2

=

(
q −

)2

= q2 − q − q +

= q2 − q +

(
(q − q−1) +

)
= (q + q−1) .

Because is (q + q−1)×(proj. onto sign representation for HA2).
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Back to Temperley-Lieb algebras

The type-A Hecke algebra HAk is the quotient of the group algebra of
the braid group Bk by relations

= (q − q−1) + . (∗)

Thm. The action of CBk on V ⊗k factors through the quotient by (∗)
when V = Cn and g = gln or sln.

Case n = 2: Define

= q − . (�)

Thm. Using the identification in (�), the action of HAk on (C2)⊗k

factors through the Temperley-Lieb quotient when δ = q + q−1 = [2]q,
i.e. TLk centralizes Uqgl2 and Uqsl2 in End((C2)⊗k) when = [2]q.



= q − = q0 − = qk −

tensor centralizer centralizer centralizer
space of Uqg of Uqgln of Uqgl2
V ⊗k Braids on k strands Type-A Hecke Temperley-Lieb

(twist relations)

M ⊗ V ⊗k One-pole braids Affine type-GL Hecke 1-boundary TL

(twist relations)

M ⊗ V ⊗k ⊗N Two-pole braids Affine type-C Hecke 2-boundary TL

(twist & wrap
relations)



Two-boundary Temperley-Lieb algebras
[MNGB04] Fix δ, δ0, δk ∈ C. The two-boundary Temperley-Lieb

algebra TL
(2)
k is a diagram algebra generated over C by diagrams

e0 =

1

1

, ek =

k

k

, and ei =

i

i

for i = 1, . . . , k − 1

, with relations eiej = ejei for |i− j| > 1,

eiei±1ei = ei
for 1 ≤ i ≤ k − 1,

= or = or =

e2i = δiei. = δ or = δ0 or = δk

(Side loops are resolved with a 1 or a δi depending on whether there are
an even or odd number of connections below their lowest point.)
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Diagram multiplication:

= ∗δ ∗ 1 ∗ δk

In short, TL
(2)
k has basis given by non-crossing diagrams with

(1) k connections to the top and to the bottom,

(2) an even number of connections to the right and to the left, and

(3) no edges with both ends on the left or both ends on the right.

However,

2` ∈ TL(2)
k

So unlike the classical T-L algebras, TL
(2)
k is not finite

dimensional! Take quotient giving

= z
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Generic module:
(act by ei, don’t make loops)

Red arrows indicate coef of z.
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(1) The two-boundary (two-pole) braid group Bk is generated by

Tk = , T0 = and Ti =

i

i

i+1

i+1

for 1 ≤ i ≤ k − 1,

subject to relations
T0 T1 T2 Tk−2 Tk−1 Tk .

(2) Fix constants q0, qk, q ∈ C.
The affine type C Hecke algebra Hk is the quotient of CBk by the
relations

(T0 − q0)(T0 + q−1
0 ) = 0, (Tk − qk)(Tk + q−1

k ) = 0

and (Ti − q)(Ti + q−1) = 0 for i = 1, . . . , k − 1.

(3) Set

= q0 − (e0 = q0 − T0)

= qk − (ek = qk − Tk)

= q − (ei = q − Ti)

so that e2j = zjej (for good zj).
The two-boundary Temperley-Lieb algebra is the quotient of Hk by the
relations eiei±1ei = ei for i = 1, . . . , k − 1.
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One advantage of using braids:

V

V ⊗

⊗ V

V ⊗

⊗ V

V ⊗

⊗ V

V ⊗

⊗ V

VM⊗

M⊗

⊗N

⊗N

Move both poles
to the left

↓

V

V ⊗

⊗ V

V ⊗

⊗ V

V ⊗

⊗ V

V ⊗

⊗ V

VM⊗

M⊗

N⊗

N⊗

Jucys-Murphy elements:

Zi =

i

i

I Pairwise commute

I Z(Hk) is (type-C) symmetric
Laurent polynomials in Zi’s

I Central characters indexed by
c ∈ Ck (modulo signed permutations)
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Representation theory of Hk
The representations of Hk are indexed by pairs (c, J), where

c is a point in the fundamental chamber of

the (finite) type C hyperplane system, and

J is a set of choices of positive/negative sides of

other distinguished hyperplanes intersecting c

Example: k = 2

(c1, c2)

hα2

hα2+2α1

hα1+α2 hα1

c2=c1+1 c2=−c1+1

c2=−c1−1c2=c1−1

c2=r1

c2=r2

c1=r1 c1=r2

c2=−r1

c2=−r2

c1=−r1c1=−r2

The ris depend on Hk’s parameters q0 and qk: r1 = logq(q0/qk), r2 = logq(q0qk).
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The representations of Hk are indexed by pairs (c, J), where

c is a point in the fundamental chamber of

the (finite) type C hyperplane system, and

J is a set of choices of positive/negative sides of
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A little more detail

• J is determined by a set of positive roots (corresp. to hyperplanes).

• For “nice” characters, there is a bijection between alcoves and marked
type-C generalized Young tableaux.

• “Intertwining operators” τi move between alcoves;
dotted lines correspond to τi = 0.

1

1 2

-1-2

s1

2

1

-2

-1

s0s1

2

-1

-2

1s1s0s1

1

-2

-1

2

s0

-1 2

1-2

s1s0

-2 1

2-1

s0s1s0-2 -1

21 s1s0s1s0

-1

-2

1

2

J = ∅

J = {ε2 − ε1}

J = {ε2}

J = {ε2, ε2 − ε1}



A little more detail

• J is determined by a set of positive roots (corresp. to hyperplanes).

• For “nice” characters, there is a bijection between alcoves and marked
type-C generalized Young tableaux.

• “Intertwining operators” τi move between alcoves;
dotted lines correspond to τi = 0.

1

1 2

-1-2

s1

2

1

-2

-1

s0s1

2

-1

-2

1s1s0s1

1

-2

-1

2

s0

-1 2

1-2

s1s0

-2 1

2-1

s0s1s0-2 -1

21 s1s0s1s0

-1

-2

1

2

J = ∅

J = {ε2 − ε1}

J = {ε2}

J = {ε2, ε2 − ε1}



hα2 hα1

hα2+2α1

c2 = c1 + 1

c2 = −c1 + 1

c2 = r1

c2 = r2

c1 = r1 c1 = r2

Thm. (D.-Ram)
(1) Representations of Hk are indexed by pairs (c, J).

(2) The representations of Hk that factor through the
Temperley-Lieb quotient are as above.
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See also...
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