Representations of the two-boundary Temperley-Lieb algebras

Zajj Daugherty

Joint work with Arun Ram;
work in progress additionally with
Iva Halacheva and Erik Wilbert

September 4, 2019

Two-boundary Temperley-Lieb algebras

Mitra, Nienhuis, De Kier, Batchelor (2004), De Ger, Nichols (2009):
Fix $z, \delta_{0}, \delta_{k} \in \mathbb{C}$. The two-boundary Temperley-Lieb algebra $T L_{k}$ is a diagram algebra generated over \mathbb{C} by diagrams

for $i=1, \ldots, k-1$, with relations $e_{i} e_{j}=e_{j} e_{i}$ for $|i-j|>1$,
$e_{i} e_{i \pm 1} e_{i}=e_{i}$
for $1 \leq i \leq k-1$,

$$
e_{i}^{2}=\delta_{i} e_{i}
$$

$$
\stackrel{\smile}{\bigcirc}=\delta_{\frown}^{\smile} \text { or }
$$

$$
\begin{aligned}
& \circ \\
& \vdots \\
& \%
\end{aligned}=\delta_{0} \text { ¢ }
$$

$$
\begin{aligned}
& u_{0}^{0} \\
& \zeta_{0} \\
& \vdots
\end{aligned}=\delta_{k} \text { ! }
$$

(Side loops are resolved with a 1 or a δ_{i} depending on whether there are an even or odd number of connections below their lowest point.)

Diagram multiplication:

In short, $T L_{k}$ has basis given by non-crossing diagrams with
(1) k connections to the top and to the bottom,
(2) an even number of connections to the right and to the left, and
(3) no edges with both ends on the left or both ends on the right.

However,

So unlike the classical T-L algebras, $T L_{k}$ is not finite dimensional! Take quotient giving

$$
\$=z
$$

Representation theory of $T L_{k}$: action on diagrams

Representation theory of $T L_{k}$: half diagrams

$$
d=\sum
$$

You can tell when to use

or not by the parity of connections to the left/right walls.

Standard module:

 (act by e_{i}, don't make loops)

For what z does this module split?

Actions on tensor space

Two-boundary Temperley-Lieb diagrams have a natural action on special tensor products of $U_{q} \mathfrak{S l}_{2}$-modules...
Let $V=L(\square)=\mathbb{C}^{2}, M=L(a), N=L(b)$ be highest-weight $U_{q} \mathfrak{s l}_{2}$-modules. Then $T L_{k}$ acts on

via factor permutation and projection operators (the parameters depend on q, a, and b). Further, this action centralizes the action of $U_{q} \mathfrak{S l}_{2}$

Schur-Weyl Duality

$\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally.

$$
g \cdot\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{k} .
$$

S_{k} also acts on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ by place permutation.

These actions commute!

Schur-Weyl Duality

Powerful consequence: a duality between representations
The double-centralizer relationship produces

$$
\left(\mathbb{C}^{n}\right)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^{\lambda} \otimes S^{\lambda} \quad \text { as a } \mathrm{GL}_{n}-S_{k} \text { bimodule, }
$$

where $\begin{array}{cll}G^{\lambda} & \text { are distinct irreducible } & \mathrm{GL}_{n} \text {-modules } \\ S^{\lambda} & \text { are distinct irreducible } & S_{k} \text {-modules }\end{array}$

More centralizer algebras

Brauer (1937)
Orthogonal and symplectic groups (and Lie algebras) acting on $\left(\mathbb{C}^{n}\right)^{\otimes k}$ diagonally centralize the Brauer algebra:

Temperley-Lieb (1971)
GL_{2} and SL_{2} (and $\mathfrak{g l}_{2}$ and $\mathfrak{s l}_{2}$) acting on $\left(\mathbb{C}^{2}\right)^{\otimes k}$ diagonally centralize the Temperley-Lieb algebra:

(Diagrams encode maps $V^{\otimes k} \rightarrow V^{\otimes k}$ that commute with the action of some classical algebra.)

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.
$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

that (1) satisfies braid relations, and
(2) commutes with the \mathcal{U}-action on $V \otimes W$
for any \mathcal{U}-modules V and W.
The braid group shares a commuting action with \mathcal{U} on $V^{\otimes k}$:

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.
$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

that (1) satisfies braid relations, and
(2) commutes with the \mathcal{U}-action on $V \otimes W$
for any \mathcal{U}-modules V and W.

The one-pole/affine braid group shares a commuting action with \mathcal{U} on $M \otimes V^{\otimes k}$:

Around the pole:

Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U}=\mathcal{U}_{q} \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.
$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R}=\sum_{\mathcal{R}} R_{1} \otimes R_{2}$ that yields a map

$$
\check{\mathcal{R}}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that (1) satisfies braid relations, and
(2) commutes with the \mathcal{U}-action on $V \otimes W$ for any \mathcal{U}-modules V and W.

The two-pole braid group shares a commuting action with \mathcal{U} on $M \otimes V^{\otimes k} \otimes N$:

Around the pole:

Universal Type B, C, D Type A Small Type A
(orthog. \& sympl.)
(gen. \& sp. linear)
$\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)$

$N \otimes(y \otimes \Lambda) \otimes N \quad(y \otimes \Lambda) \otimes N$
Quantum groups

The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by
subject to relations

i.e.

and, similarly, $T_{k-1} T_{k} T_{k-1} T_{k}=T_{k} T_{k-1} T_{k} T_{k-1}$.
(1) The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by

(2) Fix constants $t_{0}, t_{k}, t \in \mathbb{C}$.

The affine type C Hecke algebra \mathcal{H}_{k} is the quotient of $\mathbb{C} \mathcal{B}_{k}$ by the relations

$$
\begin{aligned}
& \left(T_{0}-t_{0}^{1 / 2}\right)\left(T_{0}+t_{0}^{-1 / 2}\right)=0, \quad\left(T_{k}-t_{k}^{1 / 2}\right)\left(T_{k}+t_{k}^{-1 / 2}\right)=0 \\
& \text { and } \quad\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)=0 \quad \text { for } i=1, \ldots, k-1 .
\end{aligned}
$$

(1) The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by
subject to relations $\stackrel{T_{0}}{\mathrm{O}}=\mathrm{O}-\mathrm{O}^{T_{1}}----\mathrm{O}-\mathrm{O}=\mathrm{O}-$
(2) Fix constants $t_{0}, t_{k}, t=t_{1}=t_{2}=\cdots=t_{k-1} \in \mathbb{C}$.

The affine type C Hecke algebra \mathcal{H}_{k} is the quotient of $\mathbb{C B}_{k}$ by the relations $\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0$.
(3) Set

$$
\begin{aligned}
& \stackrel{\leftrightarrow}{6}=t_{k}^{1 / 2} \text { ! } \overbrace{}^{\text {! }} \quad\left(e_{k}=t_{k}^{1 / 2}-T_{k}\right) \\
& \underset{\sim}{\infty}=t^{1 / 2}!\text { ! } \quad\left(e_{i}=t^{1 / 2}-T_{i}\right)
\end{aligned}
$$

so that $e_{j}^{2}=z_{j} e_{j}\left(\right.$ for $\left.\operatorname{good} z_{j}\right)$.
The two-boundary Temperley-Lieb algebra is the quotient of \mathcal{H}_{k} by the relations $e_{i} e_{i \pm 1} e_{i}=e_{i}$ for $i=1, \ldots, k-1$.
(1) The two-boundary (two-pole) braid group \mathcal{B}_{k} is generated by
(2) Fix constants $t_{0}, t_{k}, t=t_{1}=t_{2}=\cdots=t_{k-1} \in \mathbb{C}$.

The affine type C Hecke algebra \mathcal{H}_{k} is the quotient of $\mathbb{C B}_{k}$ by the relations $\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0$.
(3) Set
so that $e_{j}^{2}=z_{j} e_{j}$. The two-boundary Temperley-Lieb algebra is the quotient of \mathcal{H}_{k} by the relations $e_{i} e_{i \pm 1} e_{i}=e_{i}$ for $i=1, \ldots, k-1$.

Universal	Type B, C, D	Type A	Small Type A
Two-pole braids Two-pole BMW	Affine Hecke of type C (+twists $)$		

Representation theory of \mathcal{H}_{k}
The representations of \mathcal{H}_{k} are indexed by pairs (\mathbf{c}, J), where
\mathbf{c} is a point in the fundamental chamber of the (finite) type C hyperplane system, and
J is a set of choices of positive/negative sides of other distinguished hyperplanes intersecting \mathbf{c}

Example: $k=2$

The $r_{i} \mathrm{~s}$ depend on \mathcal{H}_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

Representation theory of \mathcal{H}_{k}

The $r_{i} \mathrm{~s}$ depend on \mathcal{H}_{k} 's parameters t_{0} and $t_{k}: r_{1}=\log _{t}\left(t_{0} / t_{k}\right), r_{2}=\log _{t}\left(t_{0} t_{k}\right)$

A little more detail

- J is determined by a set of positive roots (corresp. to hyperplanes).
- For "nice" characters, there is a bijection between alcoves and marked type-C generalized Young tableaux.
- "Intertwining operators" τ_{i} move between alcoves;
dotted lines correspond to $\tau_{i}=0$.

Thm. (D.-Ram)
(1) Representations of \mathcal{H}_{k} are indexed by pairs (\mathbf{c}, J).
(2) The representations of \mathcal{H}_{k} that factor through the

Temperley-Lieb quotient are as above.

Aff. type
C Hecke:

[GN]

-4|-3!-21-1

