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Suppose Alice, Becca, and Carly are running for president of their
AWM chapter. The personal preferences of the 54 members are
given by

1st : A A B B C C
2nd : B C A C A B
3rd : C B C A B A

13 0 19 0 17 5

So who should be president?

Method 1: Vote for your first choice.

A B C

13 19 22
Carly wins!

Method 2: Tell us your full ranking, and we’ll pair them off.

A ą B B ą C A ą C

30 32 32

A ă B B ă C A ă C

24 22 22

A ą B, B ą C, A ą C.

Alice wins!
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AWM chapter. The personal preferences of the 54 members are
given by

1st : A A B B C C
2nd : B C A C A B
3rd : C B C A B A

13 0 19 0 17 5

So who should be president?
Method 3: Tell us your full ranking, and we’ll run an instant run
off.

Round 1:
A B C

13 19 22

Alice loses.

Round 2:
B C

32 22

Becca wins!

Method 4: Tell us your full ranking, and we’ll give points according
to the candidates’ positions—1 for 1st, t for 2nd, 0 for 3rd.

A B C

13` 36t 19` 18t 22` 0t
p0 ď t ď 1q
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Suppose Alice, Becca, and Carly are running for president of their AWM
chapter. The personal preferences of the 54 members are given by

1st : A A B B C C
2nd : B C A C A B
3rd : C B C A B A

13 0 19 0 17 5

So who should be president?

Method 4: Tell us your full ranking, and we’ll give points according
to the candidates’ positions—1 for 1st, t for 2nd, 0 for 3rd.

A B C

p0 ď t ď 1q 13` 36t 19` 18t 22` 0t

t “ 0 : 13 19 22

t “ 0.25 : 22 23.5 22

t “ 0.5 : 31 28 22

t “ 0.75 : 40 32.5 22

t “ 1 : 49 37 22

¨ ¨ ¨t

1{31{41{60 1

C ą B ą A B ą C ą A B ą A ą C A ą B ą C



In 2000, in Florida, 2,912,790 people voted for Bush, 2,912,253
voted for Gore, 97,488 voted for Nader, and 40,575 for other.
Neglecting the “others”, suppose we had asked the rest of the
voters for their full rankings of the top three candidates.

1st : B G G N
2nd : G N B G
3rd : N B N B

2.902mil 1.421mil 1.481mil 0.118mil

So who should have been president?

Method 1: Vote for your first choice.

B G N

2.90mil 2.90mil 0.11mil
Bush won.

Method 2: Tell us your full ranking, and we’ll pair them off.

B ą G G ą N B ą N

2.90mil 5.80mil 4.32mil

B ă G G ă N B ă N

3.02mil 0.12mil 1.60mil

G ą B, G ą N, B ą N.

Gore wins.
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In 2000, in Florida, 2,912,790 people voted for Bush, 2,912,253 voted for
Gore, 97,488 voted for Nader, and 40,575 for other. Neglecting the
“others”, suppose we had asked the rest of the voters for their full
rankings of the top three candidates.

1st : B G G N
2nd : G N B G
3rd : N B N B

2.902mil 1.421mil 1.481mil 0.118mil

So who should have been president?
Method 4: Tell us your full ranking, and we’ll give points according to
the candidates’ positions—1 for 1st, t for 2nd, 0 for 3rd.

A B C

p0 ď t ď 1q 2.902` 1.421 t 2.902` 3.020 t 0.118` 1.481 t
t “ 0 : 2.90mil 2.90mil 0.19mil

t “ 0.25 : 3.26mil 3.66mil 0.49mil
t “ 0.5 : 3.61mil 4.41mil 0.86mil
t “ 0.75 : 3.97mil 5.17mil 1.23mil
t “ 1 : 4.32mil 5.92mil 1.60mil

¨ ¨ ¨t

0 .000335 1

B ą G ą N G ą B ą N



Jean-Charles, Chevalier de Borda
1733–1799
Mariner and scientist.
1770: formulated a ranked voting system, the
“Borda count”. Used by the French Academy
of Sciences, until Napolean.

Nicolas de Caritat, Marquis de Condorcet
1743–1794
Philosopher and mathematician.
In 1785, wrote an essay on probability of de-
cisions made on a majority vote, describing
likelihood of good jury outcomes; and Con-
dorcet’s paradox, which shows that majority
preferences can become intransitive with three
or more options



Dr. Donald G. Saari (1940–)
Professor of Mathematics and Economics.
1999: Used geometric methods to model voting
data as vector spaces, and decompose them based
on how they affect various tallying methods.

Kernel: Doesn’t affect any fair voting system.
Borda: Influences both point-based and pairwise systems.
Condorcet: Introduces Condorcet paradox.
Reversal: Influences point-based systems, but not pairwise.
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1st : A A B B C C Points AąB BąC CąA

2nd : B C A C A B w “ p1, t, 0q vs. vs. vs.
3rd : C B C A B A A B C AăB BăC CăA

Ker 1 1 1 1 1 1 2`2t 2`2t 2`2t 0 0 0

bA 1 1 0 ´1 0 ´1 2 ´1 ´1 4 0 ´4

bB 0 ´1 1 1 ´1 0 ´1 2 ´1 ´4 4 0

bC ´1 0 ´1 0 1 1 ´1 ´1 2 0 ´4 4

Cond 1 ´1 ´1 1 1 ´1 0 0 0 2 2 2

rA 1 1 ´2 1 ´2 1 2-4t -1`2t -1`2t 0 0 0

rB ´2 1 1 1 1 ´2 -1`2t 2-4t -1`2t 0 0 0

rC 1 ´2 1 ´2 1 1 -1`2t -1`2t 2-4t 0 0 0

Don’t worry about negatives: negative votes are fixed by the kernel.

Note: The reversal space is trivial precisely when t “ 1{2.

Theorem (Saari ’00) Given a full ranking of n candidates, the
reversal space is trivial precisely for weight

w “

ˆ

1,
n´ 2

n´ 1
, . . . ,

2

n´ 1
,

1

n´ 1
, 0

˙
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Don’t worry about negatives: negative votes are fixed by the kernel.

Note: The reversal space is trivial precisely when t “ 1{2.

Theorem (Saari ’00) Given a full ranking of n candidates, the
reversal space is trivial precisely for weight

w “

ˆ

1,
n´ 2

n´ 1
, . . . ,

2

n´ 1
,

1

n´ 1
, 0

˙

.



Points AąB BąC CąA

w “ p1, t, 0q vs. vs. vs.
A B C AăB BăC CăA

Ker 2` 2t 2` 2t 2` 2t 0 0 0

bA 2 ´1 ´1 4 0 ´4

bB ´1 2 ´1 ´4 4 0

bC ´1 ´1 2 0 ´4 4

Cond 0 0 0 2 2 2

rA 2´ 4t ´1` 2t ´1` 2t 0 0 0

rB ´1` 2t 2´ 4t ´1` 2t 0 0 0

rC ´1` 2t ´1` 2t 2´ 4t 0 0 0

Don’t worry about negatives: negative votes are fixed by the kernel.

Note: The reversal space is trivial precisely when t “ 1{2.

Theorem (Saari ’00) Given a full ranking of n candidates, the
reversal space is trivial precisely for weight

w “

ˆ

1,
n´ 2

n´ 1
, . . . ,

2

n´ 1
,

1

n´ 1
, 0

˙

.



Points AąB BąC CąA

w “ p1, t, 0q vs. vs. vs.
A B C AăB BăC CăA

Ker 2` 2t 2` 2t 2` 2t 0 0 0

bA 2 ´1 ´1 4 0 ´4

bB ´1 2 ´1 ´4 4 0

bC ´1 ´1 2 0 ´4 4

Cond 0 0 0 2 2 2

rA 2´ 4t ´1` 2t ´1` 2t 0 0 0

rB ´1` 2t 2´ 4t ´1` 2t 0 0 0

rC ´1` 2t ´1` 2t 2´ 4t 0 0 0

Don’t worry about negatives: negative votes are fixed by the kernel.

Note: The reversal space is trivial precisely when t “ 1{2.

Theorem (Saari ’00) Given a full ranking of n candidates, the
reversal space is trivial precisely for weight

w “

ˆ

1,
n´ 2

n´ 1
, . . . ,

2

n´ 1
,

1

n´ 1
, 0

˙

.



Permutations and the symmetric group
A permutation is a bijective (one-to-one and onto) function

σ : t1, . . . , nu Ñ t1, . . . , nu.

Permutation diagrams:

1

1

2

2

3

3

4

4

5

5

1 2 3 4 5

“

1

1

2

2

3

3

4

4

5

5

Permutations “multiply” by stacking and resolving.

The symmetric group Sn is the group of permutations of 1, . . . , n
with multiplication given by function composition.
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Some examples:

S1 :

1

1

S2 :

1

1

2

2

1

1

2

2

S3 :

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3



A representation of a group is a map from the group to a set of
matrices that follows same multiplication rules.

Example: Permutation representation of the symmetric group.

1

1

2

2

3

3

v1

v1

v2

v2

v3

v3

“

¨

˝

0 1 0
0 0 1
1 0 0

˛

‚

Pick a basis for Q3:

v1 “

¨

˝

1
0
0

˛

‚ v2 “

¨

˝

0
1
0

˛

‚ v3 “

¨

˝

0
0
1

˛

‚

Map each permutation to the matrix that permutes the basis
vectors in the same way. (Recall: ith col. is image of ith basis vector)

Aside: we actually have a representation of the group ring

QSn “

#

ÿ

σPSn

rσσ | rσ P Q

+

, with multiplication like polynomials.
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2

2

3

3
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0 0 1 1

1

2
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1

2

2

3
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0 1 0
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„
1 0 0
0 1 0
0 0 1

1

1

2

2

3

3
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0 1 0

„
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„
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1

2

2

3

3

ÞÑ
0 0 1
0 1 0
1 0 0

„
0 -1 0
-1 0 0
0 0 1

Notice that the permutation representation has an invariant
subspace Qtv1 ` v2 ` v3u, since

Mpv1 ` v2 ` v3q “ v1 ` v2 ` v3

for all permutation matrices M .

Change to basis

w1 “ v1 ´ v2, w2 “ v2 ´ v3, w3 “ v1 ` v2 ` v3
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ρ
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1

1

1

2

2

3

3
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0 0 1
0 1 0
1 0 0

„
0 -1 0
-1 0 0
0 0 1

ρ

ψ

0 -1
-1 0

1

Start with the permutation representation P with basis tv1, v2, v3u.

Change to basis

w1 “ v1 ´ v2, w2 “ v2 ´ v3, w3 “ v1 ` v2 ` v3

We say P is isomorphic to the sum of two smaller representations:
P – ρ‘ ψ

We say ρ and ψ are simple because neither has any invariant
subspaces.
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Some combinatorics.

Let n be a non-negative integer.
A partition λ of n is a non-ordered list of positive integers which
sum to n.

Example: the partitions of 3 are p3q, p2, 1q, and p1, 1, 1q.

We draw partitions as n boxes left-justified, where the parts are
the number of boxes in a row (reading from the bottom):

λ “ p5, 4, 4, 2q “



Some combinatorics.

Let n be a non-negative integer.
A partition λ of n is a non-ordered list of positive integers which
sum to n.

Example: the partitions of 3 are p3q, p2, 1q, and p1, 1, 1q.

We draw partitions as n boxes left-justified, where the parts are
the number of boxes in a row (reading from the bottom):

λ “ p5, 4, 4, 2q “



H

S3 :

...
...

...

Young’s lattice:

λ-Tableau: a path from H down to a partition λ.
Theorem 1: (Up to isomorphism) the simple Sn-representations are
indexed by partitions of n.
Theorem 2: If λ is a partition of n, then the corresponding
representation has basis indexed by λ-tableaux, and matrices
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Why do we care about representations of Sn?
v1

v1

v2

v2

v3

v3

“

¨

˝

0 1 0
0 0 1
1 0 0

˛

‚

Pick a basis for Q3:

v1 “

¨

˝

1
0
0

˛

‚ v2 “

¨

˝

0
1
0

˛

‚ v3 “

¨

˝

0
0
1

˛

‚

Map each permutation to the matrix that permutes the basis
vectors in the same way.

We use the permutation representation to model the outcome
space. For example, the vector

p13, 19, 22q “ 13A` 19B ` 22C

means A, B, and C got 13, 19, and 22 votes, respectively.

Theorem. The permutation representation decomposes into one
simple 1-dimensional (trivial) representation and one simple
pn´ 1q-dimensional (reflection) representation.
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The permutation representation models the outcome space.
More: all voting data spaces are symmetric group “modules”.

In other words:
Permutations naturally move around voting and outcome spaces.

(Permute the candidate’s names, or their places on the ballot.)

Tally functions (how you add up the vote) are “Sn-module
homomorphisms”, i.e. maps from the voter data to the outcome
space that preserve

‚ addition,

If individual precincts add up votes, and then combine results, that

should be the same as if the tallying happened all in one place.

‚ scaling, and

If everyone’s vote counted 5 times, the outcome should be the same.

‚ permutations.

Changing the order that candidates appear on the ballot ideally

shouldn’t change the outcome.
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Big representation theory theorems

Maschke’s Theorem: All Sn modules decompose uniquely(ish) into
simple modules.

Schur’s Lemma: If ϕ :M Ñ N is a Sn-module homormophism,
then on each simple piece of M , ϕ is either an isomorphism (is
bijective) or trivial (sends everything to 0).

Example: The space of possible votes in a 3-way race with
full-rankings is

‘ ‘ ‘

Kernel ‘ Borda ‘ Reversal ‘ Condorcet

The space of possible outcomes in a 3-way race is

‘

Ties ‘ Relative positions

First result: If you decide a winner based on a points system,
Condorcet cycles get lost in the tally.
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Example: The space of possible votes in a 3-way race with
full-rankings is

‘ ‘ ‘

Kernel ‘ Borda ‘ Reversal ‘ Condorcet

The space of possible outcomes of a pairwise comparison (e.g. how
many times is A ą B, how many times is B ą A, . . . ) in a 3-way
race is

‘ ‘ ‘ .

But by further analysis, one can compute that the image is at most

‘ ‘ .

In fact, the information lost is precisely the “reversal” space.
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Collect full rankings of preferences for n candidates. . .

Votes
¨ ¨ ¨ ` pn´1q ¨ ¨ ¨

`p2n´ 6q ¨ ¨ ¨ ` ¨ ¨ ¨ `
.
.
.

(Lots of stuff)

Pairwise outcomes

¨ ¨ ¨ ` 2 ¨ ¨ ¨

`2 ¨ ¨ ¨ `
¨ ¨ ¨

Final tally

¨ ¨ ¨ ` ¨ ¨ ¨

assign points

compare pairs

tally
p

airs

Goal 1: Find a weighting for the points
system that agrees as much as possible
with the pairwise voting system.

Result 1 (Saari, D.): The point-based system that agrees most
with the pairwise outcomes is the (modified) Borda count, with
weight

w “

´

1, n´2
n´1 , . . . ,

2
n´1 ,

1
n´1 , 0

¯

(as expected).
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Other results. . .
Partial rankings (D. ’05): Ask voters to rank their top k choices
(more practical if there are many choices).

Then the points system
that agrees most with the pairwise outcomes is the natural
analogue to the Borda count, with weight

n´ i for the ith candidate (1 ď i ď k), and
1

2
pn´ k ´ 1q for the last n´ k candidates.

(Average the remaining points amongst the last-place candidates.)
For example, if you ask for the top 3 out of 20, the points are
19, 18, 17, 8, . . . , 8.

[D., Eustis, Minton, Orrison; ’07]: Notes on “Approval voting”
(ask voters which candidates they approve of), and “Effective
spaces” (what kind of voting profiles influence elections).

Committees (Barcelo, Bernstein, Bockting-Conrad, McNichols,
Nyman, Viel; ’18): How to tally votes for committees with
representation from several departments (using representation
theory of Sm o Sn).
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What do we want, and why do we care?

§ Mathematicians: More data preservation is better.

§ Idealists: Everyone should have a fair say.

§ Pragmatists: Simpler voting systems are easier to implement.

§ Cynics: Stupid things happen when people, en mass, are
forced to game their votes.

§ (Over-educated) Conspiracy Theorists: Our voting system is
provably about as bad as it can be without everyone noticing.

§ Kenneth Arrow: No voting system is ideal, so. . .

§ Mathematicians (again): Oh, come on!



Some references. . .
‚ Many many publications of Donal Saari, particularly around
1999–2000. Also, “Decisions and Elections; Explaining the
Unexpected”, Cambridge University Press, 2001.

‚ “Voting, the symmetric group, and representation theory”, by
D., Eustis, Minton, and Orrison. American Mathematical Monthly
116 (2009), no. 8, 667–687.

‚ “Algebraic voting theory and representations of Sm o Sn”, by
Barcelo, Bernstein, Bockting-Conrad, McNichols, Nyman, Viel.
(preprint: arXiv:1807.03743)

‚ “How not to be wrong”, by Jordan Ellenberg.
Chapter 17: “There is no such thing as public opinion.”

And even though our system is non-ideal as is. . .

Go vote tomorrow!
http://vote.nyc.ny.us


